Tibetan Text Classification Using Distributed Representations of Words
Jiang, Tao; Yu, Hongzhi; Zhang, Bing
2015
会议名称PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING
会议录名称IEEE
页码123-126
会议日期OCT 24-25, 2015
会议地点Suzhou, PEOPLES R CHINA
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
出版者IEEE
摘要Tibetan text classification is one of the most important research topics in Tibetan information processing. In the existing Tibetan text classification method, the representation of documents is based on traditional vector space model which has the high dimension data and lack semantic information. In this paper, a Tibetan text classification based on distributed representations of words method is proposed. With this method one can first tags the POS of the document by using maximum entropy model, and then selects only nouns and verbs as key features. At last document are represented by the weight of the word classes, which are trained by word2vec tool. The experimental results show that our model outperforms competitive traditional Tibetan text classification method, and the F-measure has improved by 9%.
关键词text classification distributed representations word2vec Tibetan text POS
URL查看原文
收录类别CPCI ; CPCI-S
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000380428000031
原始文献类型Proceedings Paper
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/9735
专题财税与公共管理学院
人事处(教师发展中心)
作者单位1.Northwest Univ Nationalities, Inst Informat Technol, Lanzhou, Peoples R China;
2.Lanzhou Univ Finance & Ecnom, Personnel Dept, Lanzhou, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Tao,Yu, Hongzhi,Zhang, Bing. Tibetan Text Classification Using Distributed Representations of Words[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2015:123-126.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Tao]的文章
[Yu, Hongzhi]的文章
[Zhang, Bing]的文章
百度学术
百度学术中相似的文章
[Jiang, Tao]的文章
[Yu, Hongzhi]的文章
[Zhang, Bing]的文章
必应学术
必应学术中相似的文章
[Jiang, Tao]的文章
[Yu, Hongzhi]的文章
[Zhang, Bing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。