General composite quantile regression: Theory and methods
Wu, Yanke; Tian, Maozai; Tang, Man-Lai
2020-05-02
发表期刊COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
卷号49期号:9页码:2217-2236
摘要In this article, we propose a new regression method called general composite quantile regression (GCQR) which releases the unrealistic finite error variance assumption being imposed by the traditional least squares (LS) method. Unlike the recently proposed composite quantile regression (CQR) method, our proposed GCQR allows any continuous non-uniform density/weight function. As a result, determination of the number of uniform quantile positions is not required. Most importantly, the proposed GCQR criterion can be readily transformed to a linear programing problem, which substantially reduces the computing time. Our theoretical and empirical results show that the GCQR is generally efficient than the CQR and LS if the weight function is appropriately chosen. The oracle properties of the penalized GCQR are also provided. Our simulation results are consistent with the derived theoretical findings. A real data example is analyzed to demonstrate our methodologies.
关键词Asymptotic relative efficiency general composite quantile regression oracle property weight function
DOI10.1080/03610926.2019.1568493
收录类别SCI ; EI ; SCOPUS ; SCIE
ISSN0361-0926
语种英语
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000519155600011
出版者TAYLOR & FRANCIS INC
EI入藏号20201208318144
原始文献类型Article
EISSN1532-415X
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/424
专题统计与数据科学学院
作者单位1.Guangdong Ocean Univ, Sch Math & Comp Sci, Zhanjiang, Guangdong, Peoples R China;
2.Renmin Univ China, Sch Stat, Ctr Appl Stat, Beijing, Peoples R China;
3.Xinjiang Univ Finance & Econ, Sch Stat & Informat, Xinjiang, Peoples R China;
4.Lanzhou Univ Finance & Econ, Sch Stat, Lanzhou, Gansu, Peoples R China;
5.Hang Seng Univ Hong Kong, Dept Math & Stat, Sha Tin, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Wu, Yanke,Tian, Maozai,Tang, Man-Lai. General composite quantile regression: Theory and methods[J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS,2020,49(9):2217-2236.
APA Wu, Yanke,Tian, Maozai,&Tang, Man-Lai.(2020).General composite quantile regression: Theory and methods.COMMUNICATIONS IN STATISTICS-THEORY AND METHODS,49(9),2217-2236.
MLA Wu, Yanke,et al."General composite quantile regression: Theory and methods".COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 49.9(2020):2217-2236.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Yanke]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
百度学术
百度学术中相似的文章
[Wu, Yanke]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
必应学术
必应学术中相似的文章
[Wu, Yanke]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。