作者李子怡
姓名汉语拼音Li Ziyi
学号2022000001037
培养单位兰州财经大学
电话17371141286
电子邮件1324938987@qq.com
入学年份2022-9
学位类别学术硕士
培养级别硕士研究生
学科门类经济学
一级学科名称理论经济学
学科方向西方经济学
学科代码020104
第一导师姓名管新帅
第一导师姓名汉语拼音Guan Xinshuai
第一导师单位兰州财经大学
第一导师职称教授
题名数据要素配置对物流效率的影响研究
英文题名Research on the influence of Data Element Allocation on Logistics Efficiency
关键词数据要素 物流 人力资本 技术创新 效率
外文关键词Data elements; Logistics; Human capital; Technological innovation; Efficiency
摘要

数据要素是我国具有重要战略地位的基本生产要素,数据要素的价值需要依托有效的配置来实现,数据要素优化配置能够最大程度的降低数据交易费用、释放数据要素潜力。随着人们交易需求的不断增加,物流产业的运营方式和服务种类日益多样化,数据要素在现代物流运行过程中被广泛使用。文章从理论上探讨了数据要素配置对物流效率的影响机制,人力资本和技术创新赋能数据要素提升物流效率的机制与路径,以及不同效率和不同区域数据要素配置对于物流效率的影响差异。
首先,本文以我国30个省(除西藏及港澳台地区)2013-2021年的面板数据为研究对象,从数据研发管理、数据传播共享、数据应用环境和数字化推广度四个方面建立数据要素配置评价指标体系,运用熵值法测得数据要素配置水平。从投入、产出和非期望产出三个角度选取物流效率测度指标,运用DEA-CCR模型测得物流效率水平。采用固定面板回归模型分析和检验数据要素配置水平对物流效率的直接影响结果。采用主成分分析法测算数据要素配置水平、调整样本期、滞后一期解释变量等三种方法再次回归,证明了回归结果的稳健性。其次,将人力资本和技术创新作为中介变量,回归分析了数据要素配置如何通过人力资本和技术创新影响物流效率。最后,从效率和地区两个角度划分样本,分析了不同效率和不同地区数据要素配置对物流效率的影响效果。
本文研究发现:第一,我国数据要素配置水平整体提升较快,但地区差异显著,缩小数据要素配置地域差异刻不容缓。第二,物流效率水平整体呈上升趋势,大部分地区效率水平较高,市场潜力巨大。第三,数据要素合理配置可以显著提升物流效率。第四,数据要素合理配置能够提升人力资本价值和技术创新并产生中介效应,共同促进物流效率提升。第五,数据要素配置对不同物流效率和不同地区的影响程度具有差异性,数据要素配置对于物流效率较低的地区和西部地区的提升幅度大。最后针对研究结果,提出了落实大数据产业发展政策、完善物流基础设施、创新产业发展模式、培养综合创新型人才以及推进区域协调发展等五个方面的对策建议。

英文摘要

Data elements are fundamental production factors with important strategic positions in China, and the value of data elements needs to be realized through effective allocation. Optimizing the allocation of data elements can minimize data transaction costs and unleash the potential of data elements. With the continuous improvement of people's transaction needs, the operation methods and types of the logistics industry are becoming increasingly diversified, and data elements are widely used in the operation process of the logistics industry.The article theoretically explores the effect of data elements empowering the logistics industry, the mechanism and path of human capital promoting the efficiency improvement of the logistics industry, and the impact of different efficiency and regional data elements on the efficiency of the logistics industry.
Firstly,this article takes panel data from 30 provinces in China from 2013 to 2021 as the research object, and establishes an evaluation index system for data element configuration from four aspects: digital R&D management, data application environment, digital dissemination and sharing, and digital promotion degree. The entropy method is used to measure the level of data element configuration. Establish a logistics efficiency index system from the perspectives of input, output, and unexpected output, and use the DEA-CCR model to measure the efficiency level of the logistics industry.Using a fixed panel regression model to analyze and test the direct impact of data element allocation level on logistics industry efficiency. Using principal component analysis to measure the level of data element allocation, adjust sample period, and lagged explanatory variables by one period, the robustness of the regression results was further demonstrated through regression analysis. Secondly, human capital and technological innovation are taken as mediating variables, and the regression analysis analyzes how the allocation of data elements affects logistics efficiency through human capital and technological innovation. Finally, the samples are divided from the perspectives of efficiency and region, and the impact of data element allocation on logistics efficiency in different efficiencies and regions is analyzed.
The results of this paper show that: first, the overall level of data element allocation in China has improved rapidly, but the regional differences are significant, and it is urgent to reduce the regional differences in data element allocation. Second, the efficiency level of the logistics industry is on the rise, with a high level of efficiency in most regions and huge market potential. Third, the rational allocation of data elements can significantly improve logistics efficiency. Fourth, the rational allocation of data elements can enhance the value of human capital and technological innovation, and create synergies, and jointly promote the improvement of logistics efficiency.Fifth, the impact of data element allocation on different logistics efficiency and different regions is different, and the impact of data element allocation on regions with low logistics efficiency and western region is large. Finally, according to the research results, five countermeasures and suggestions are put forward, including the implementation of big data industry development policy, the improvement of logistics infrastructure, the innovation of industrial development model, the cultivation of comprehensive innovative talents, and the promotion of regional coordinated development.

学位类型硕士
答辩日期2025-05-20
学位授予地点甘肃省兰州市
语种中文
论文总页数67
参考文献总数78
馆藏号0006430
保密级别公开
中图分类号F091.3/67
文献类型学位论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/39854
专题经济学院
推荐引用方式
GB/T 7714
李子怡. 数据要素配置对物流效率的影响研究[D]. 甘肃省兰州市. 兰州财经大学,2025.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2022000001037.pdf(2806KB)学位论文 开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[李子怡]的文章
百度学术
百度学术中相似的文章
[李子怡]的文章
必应学术
必应学术中相似的文章
[李子怡]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2022000001037.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。