IDH-Anderson model and density of states measure | |
Zhang, Lixia1![]() ![]() | |
2025-03-28 | |
在线发表日期 | 2025-03 |
发表期刊 | INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS
![]() |
摘要 | In this paper, we investigate continuity of the density of state (DoS) measure for the Anderson model on the infinite-dimensional hypercube (IDH), which we call IDH-Anderson model. We first show that the DoS measure for the IDH-Anderson model is weak*-continuous with respect to a single-site probability measure. And then we give a quantitative estimate to the DoS measure, which is weak*-Lipshitz continuous with respect to a single-site probability measure. |
关键词 | Anderson model density of state measure infinite-dimensional hypercube weak*-topology |
DOI | 10.1142/S0219025725500043 |
收录类别 | SCIE |
ISSN | 0219-0257 |
语种 | 英语 |
WOS研究方向 | Mathematics ; Physics |
WOS类目 | Mathematics, Applied ; Quantum Science & Technology ; Physics, Mathematical ; Statistics & Probability |
WOS记录号 | WOS:001455321600001 |
出版者 | WORLD SCIENTIFIC PUBL CO PTE LTD |
原始文献类型 | Article ; Early Access |
EISSN | 1793-6306 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/38931 |
专题 | 会计学院 统计与数据科学学院 |
通讯作者 | Zhang, Lixia |
作者单位 | 1.Northwest Normal Univ, Sch Math & Stat, Lanzhou 730070, Gansu, Peoples R China; 2.Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R China; 3.Lanzhou Univ Finance & Econ, Sch Stat & Date Sci, Lanzhou 730070, Gansu, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Lixia,Wang, Caishi,Chen, Jinshu,et al. IDH-Anderson model and density of states measure[J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS,2025. |
APA | Zhang, Lixia,Wang, Caishi,Chen, Jinshu,&Ren, Suling.(2025).IDH-Anderson model and density of states measure.INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS. |
MLA | Zhang, Lixia,et al."IDH-Anderson model and density of states measure".INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS (2025). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论