作者 | 欧阳飞 |
姓名汉语拼音 | Ouyang Fei |
学号 | 2019000005067 |
培养单位 | 兰州财经大学 |
电话 | 13077978476 |
电子邮件 | 895357469@qq.com |
入学年份 | 2019-9 |
学位类别 | 学术硕士 |
培养级别 | 硕士研究生 |
学科门类 | 经济学 |
一级学科名称 | 应用经济学 |
学科方向 | 金融工程 |
学科代码 | 0202Z1 |
第一导师姓名 | 陈芳平 |
第一导师姓名汉语拼音 | Chen Fangping |
第一导师单位 | 兰州财经大学 |
第一导师职称 | 教授 |
题名 | 基于机器学习的多因子量化投资策略研究 |
英文题名 | A study of multi-factor quantitative investment strategies based on machine learning |
关键词 | 机器学习 多因子 量化策略 |
外文关键词 | Machine Learning ; Multi-factor ; Quantify the strategy |
摘要 | 本文将建立在多因子理论模型的基础上利用线性回归模型、LSTM神经网络、LightGBM模型构建量化投资策略。即对市场众多影响股票收益率的因子分别运用传统的IC分析法以及随机森林机器学习算法进行有效因子以及重要因子筛选,将筛选过后的因子作为LSTM神经网络模型和LightGBM模型两种机器学习算法的输入特征,进行模型训练并进行预测股票涨跌,构建投资组合回测得到收益率曲线,并与多因子线性回归选股模型构建的投资组合收益率曲线进行分析对比。 本文基于2015-01-01至2021-11-30所有A股股票共64个影响股票收益率的因子数据和相应的月收益率进行建模分析,构建六组量化投资策略与一组改进后的量化投资策略,并基于相同的环境回测,研究发现:回测期间内(1)IC分析法和随机森林机器学习算法两种方法都能有效的对初始因子库因子进行筛选,但两种方法筛选后的因子存在较大差异;(2)基于线性回归模型、LightGBM、LSTM模型构建的七组量化投资策略在回测时期内,均获得了超过基准收益率的收益,并都获得较高夏普比率;(3)在基于线性回归、LSTM模型构建的量化投资策略,将IC分析法作为因子筛选方法,获得更好的回测收益。基于LightGBM模型构建的量化投资策略,将随机森林作为因子筛选方法,获得更好的回测收益;(4)将IC分析法作为因子筛选方法,仅基于LSTM模型构建的量化投资策略回测收益与改进后的基于LightGBM构建的量化投资策略回测收益优于基于线性回归模型构建的量化投资策略回测收益;将随机森林方法作为因子筛选方法,基于LSTM和LightGBM机器学习模型构建的量化投资策略回测收益优于线性模型构建的量化投资策略回测收益。较基于线性回归模型构建的量化投资策略,机器学习模型构建的量化投资策略稳定性、风险控制等指标也都有所提升;(5)在七组量化投资策略模型中,将IC分析法作为因子筛选方法,基于LSTM模型构建的量化投资策略模型在回测期间获得了最佳收益,同时,在回测期间也拥有最大的收益回撤。 |
英文摘要 | This paper will build a quantitative investment strategy using linear regression model, LSTM neural network, and LightGBM model on the basis of multi-factor theory model. That is, the traditional IC analysis method and the stochastic forest machine learning algorithm are used to screen the effective factors and important factors respectively for many factors affecting the stock returns in the market, and the filtered factors are used as the input characteristics of the two machine learning algorithms of the LSTM neural network model and the LightGBM model, the model is trained and the stock rise and fall is predicted, the portfolio back test is constructed to obtain the yield curve, and the portfolio yield curve constructed by the multi-factor linear regression stock selection model is analyzed and compared. Based on the modeling and analysis of a total of 64 factor data and corresponding monthly returns of all A-share stocks from 2015-01-01 to 2021-11-30, six sets of quantitative investment strategies and a set of improved quantitative investment strategies are constructed, and based on the same environmental back test, the study finds that the two methods of (1) IC analysis method and random forest machine learning algorithm during the back testing period can effectively filter the initial factor library factors, but there are large differences in the factors after the screening of the two methods ;(2) Seven groups of quantitative investment strategies based on linear regression models, LightGBM, and LSTM models have obtained returns that exceed the benchmark rate of return and all obtained higher Sharpe ratios during the back testing period; (3) In quantitative investment strategies based on linear regression and LSTM models, IC analysis methods are used as factor screening methods to obtain better back testing returns. Based on the lightGBM model, the quantitative investment strategy uses random forest as a factor screening method to obtain better back testing returns; (4) Using ic analysis as a factor screening method, the back testing return of quantitative investment strategy based only on LSTM model and the back testing return of the improved quantitative investment strategy based on LightGBM are better than the back testing return of quantitative investment strategy based on linear regression model; the back testing return of quantitative investment strategy based on LSTM and LightGBM machine learning model is superior to the back testing return of quantitative investment strategy constructed by linear model. Compared with the quantitative investment strategy based on the linear regression model, the quantitative investment strategy stability and risk control indicators constructed by the machine learning model have also been improved; (5) In the seven sets of quantitative investment strategy models, the IC analysis method is used as a factor screening method, and the quantitative investment strategy model based on the LSTM model obtains the best return during the back testing period, and at the same time, it also has the largest draw down during the back testing period. |
学位类型 | 硕士 |
答辩日期 | 2022-05-29 |
学位授予地点 | 甘肃省兰州市 |
语种 | 中文 |
论文总页数 | 81 |
参考文献总数 | 43 |
馆藏号 | 0004177 |
保密级别 | 公开 |
中图分类号 | F83/406 |
文献类型 | 学位论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/32669 |
专题 | 金融学院 |
推荐引用方式 GB/T 7714 | 欧阳飞. 基于机器学习的多因子量化投资策略研究[D]. 甘肃省兰州市. 兰州财经大学,2022. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
2019000005067.pdf(3498KB) | 学位论文 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[欧阳飞]的文章 |
百度学术 |
百度学术中相似的文章 |
[欧阳飞]的文章 |
必应学术 |
必应学术中相似的文章 |
[欧阳飞]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论