Bi-space Global Attractors for a Class of Nonclassical Parabolic Equations with Arbitrary Polynomial Growth in Unbounded Domain
Li, Jia-lin; Zhang, Fang-hong
2016-08
发表期刊MEDITERRANEAN JOURNAL OF MATHEMATICS
卷号13期号:4页码:1807-1821
摘要In this article, we consider the dynamical behavior of the nonclassical diffusion equation in unbounded domain while the nonlinearity satisfy the arbitrary order polynomial growth conditions. Using the tail-estimated method and the asymptotic a priori estimate method, we obtain the existence of -global attractor, -global attractor, -global attractor and -global attractor.
关键词Nonclassical diffusion equations global attractor absorbing set unbounded domain
DOI10.1007/s00009-015-0617-0
收录类别SCI ; SCIE
ISSN1660-5446
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000380671700025
出版者SPRINGER BASEL AG
原始文献类型Article
EISSN1660-5454
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/1300
专题兰州财经大学
作者单位1.Hainan Univ, Coll Appl Sci & Technol, Danzhou 571737, Peoples R China;
2.Lanzhou Commercial Coll, Dept Math, Longqiao Coll, Lanzhou 730101, Peoples R China
推荐引用方式
GB/T 7714
Li, Jia-lin,Zhang, Fang-hong. Bi-space Global Attractors for a Class of Nonclassical Parabolic Equations with Arbitrary Polynomial Growth in Unbounded Domain[J]. MEDITERRANEAN JOURNAL OF MATHEMATICS,2016,13(4):1807-1821.
APA Li, Jia-lin,&Zhang, Fang-hong.(2016).Bi-space Global Attractors for a Class of Nonclassical Parabolic Equations with Arbitrary Polynomial Growth in Unbounded Domain.MEDITERRANEAN JOURNAL OF MATHEMATICS,13(4),1807-1821.
MLA Li, Jia-lin,et al."Bi-space Global Attractors for a Class of Nonclassical Parabolic Equations with Arbitrary Polynomial Growth in Unbounded Domain".MEDITERRANEAN JOURNAL OF MATHEMATICS 13.4(2016):1807-1821.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Jia-lin]的文章
[Zhang, Fang-hong]的文章
百度学术
百度学术中相似的文章
[Li, Jia-lin]的文章
[Zhang, Fang-hong]的文章
必应学术
必应学术中相似的文章
[Li, Jia-lin]的文章
[Zhang, Fang-hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。