Impact of missing data on parameter estimation algorithm of normal distribution
Feng, Wang1; Shaotong, Wang2
2013
会议名称2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation, IMSNA 2013
会议录名称Proceedings - 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation, IMSNA 2013
期号0
页码574-578
会议日期2013-12-23 - 2013-12-24
会议地点Toronto, ON, Canada
出版者IEEE Computer Society
摘要

This paper propose a simulation approach for the parameter estimation of normal distribution, to analyze the EM algorithm with missing data under different missing rates and complete data maximum likelihood estimation. The simulation result shows that the EM algorithm and the maximum likelihood estimates are almost unanimously when the missing rate is less than 0.25, but the effect of parameter estimation of the EM algorithm gradually deteriorates when the missing rate increases. The result also shows that the EM algorithm is more sensitive to the initial value. In addition, this paper also analyzes the evaluation of the selection of initial value for EM algorithm. © 2013 IEEE.

关键词Genetic algorithms Maximum likelihood estimation Normal distribution Sensor networks EM algorithms Maximum likelihood estimate Missing data Missing rate Parameter estimation algorithm Simulation approach
DOI10.1109/IMSNA.2013.6743342
收录类别EI ; CPCI
语种英语
EI入藏号20141617597703
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/9769
专题兰州财经大学
作者单位1.School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou, China;
2.School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
推荐引用方式
GB/T 7714
Feng, Wang,Shaotong, Wang. Impact of missing data on parameter estimation algorithm of normal distribution[C]:IEEE Computer Society,2013:574-578.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Feng, Wang]的文章
[Shaotong, Wang]的文章
百度学术
百度学术中相似的文章
[Feng, Wang]的文章
[Shaotong, Wang]的文章
必应学术
必应学术中相似的文章
[Feng, Wang]的文章
[Shaotong, Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。