A clustering algorithm based on variance-similarity
Li, Zhen Dong1; Li, Fei2
2013
会议名称2013 2nd International Conference on Measurement, Instrumentation and Automation, ICMIA 2013
会议录名称Applied Mechanics and Materials
卷号333-335
期号0
页码1306-1309
会议日期2013-04-23 - 2013-04-24
会议地点Guilin, China
出版地DURNTEN-ZURICH
出版者Trans Tech Publications Ltd, Kreuzstrasse 10, Zurich-Durnten, CH-8635, Switzerland
摘要

Clustering algorithms, like K-means Algorithm, use distances in attribute space to cluster data. However the computation of distances in attribute space influences the accuracy. So innovatively, Variance-Similarity clustering algorithm defines similarity as a function of the attribute variance, and clusters data by the comparison of similarities. In computer simulation, the comparison of Variance-Similarity Algorithm and K-means Algorithm on UCI data sets presents that Variance-Similarity Algorithm has a better clustering accuracy than K-means Algorithm. © (2013) Trans Tech Publications, Switzerland.

关键词Computer simulation Data mining Attribute values Clustering accuracy k-Means algorithm Variance-similarity
DOI10.4028/www.scientific.net/AMM.333-335.1306
收录类别EI ; CPCI-S ; CPCI
语种英语
WOS研究方向Engineering ; Instruments & Instrumentation
WOS类目Engineering, Mechanical ; Instruments & Instrumentation
WOS记录号WOS:000329080300251
EI入藏号20133516681106
原始文献类型Proceedings Paper
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/9766
专题兰州财经大学
作者单位1.School of Information Engineering, Lanzhou University of Finance and Economics, China;
2.School of Statistics, Lanzhou University of Finance and Economics, China
推荐引用方式
GB/T 7714
Li, Zhen Dong,Li, Fei. A clustering algorithm based on variance-similarity[C]. DURNTEN-ZURICH:Trans Tech Publications Ltd, Kreuzstrasse 10, Zurich-Durnten, CH-8635, Switzerland,2013:1306-1309.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Zhen Dong]的文章
[Li, Fei]的文章
百度学术
百度学术中相似的文章
[Li, Zhen Dong]的文章
[Li, Fei]的文章
必应学术
必应学术中相似的文章
[Li, Zhen Dong]的文章
[Li, Fei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。