Inherit differential privacy in distributed setting: Multiparty randomized function computation
Wu, Genqiang1,2; He, Yeping1,3; Wu, Jingzheng1; Xia, Xianyao1
2016
会议名称Joint 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, IEEE TrustCom/BigDataSE/ISPA 2016
会议录名称Proceedings - 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, IEEE TrustCom/BigDataSE/ISPA 2016
期号0
页码921-928
会议日期2016-08-23 - 2016-08-26
会议地点Tianjin, China
出版地NEW YORK
出版者Institute of Electrical and Electronics Engineers Inc.
摘要

How to achieve differential privacy in the distributed setting, where the dataset is distributed among the istrustful parties, is an important problem. We consider in what condition can a protocol inherit the differential privacy property of a function it computes. The heart of the problem is the secure multiparty computation of randomized function. A notion obliviousness is introduced, which captures the key security problems when computing a randomized function from a deterministic one in the distributed setting. By this observation, a sufficient and necessary condition about securely computing a randomized function from a deterministic one is given. The above result can not only be used to determine whether a protocol computing differentially private function is secure, but also be used to construct a secure one. Then we prove that the differential privacy property of a function can be inherited by the protocol computing it if the protocol securely computes it. A composition theorem of differentially private protocols is also presented. Finally, we construct protocols of Gaussian mechanism and Laplace mechanism, which inherit the differential privacy property. © 2016 IEEE.

关键词Big data Cryptography Data privacy Composition theorem Differential privacies Function computations Obliviousness Private protocols Random variable generations Secure multi-party computation Sufficient and necessary condition
DOI10.1109/TrustCom.2016.0157
收录类别EI ; CPCI-S ; CPCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000401929800120
EI入藏号20171103451882
原始文献类型Proceedings Paper
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/9725
专题信息工程与人工智能学院
作者单位1.NFS, Institute of Software Chinese Academy of Sciences, Beijing;
2.100190, China;
3.SIE, Lanzhou University of Finance and Economics, Lanzhou;
4.730020, China;
5.SKLCS, Institute of Software Chinese Academy of Sciences, Beijing;
6.100190, China
推荐引用方式
GB/T 7714
Wu, Genqiang,He, Yeping,Wu, Jingzheng,et al. Inherit differential privacy in distributed setting: Multiparty randomized function computation[C]. NEW YORK:Institute of Electrical and Electronics Engineers Inc.,2016:921-928.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Genqiang]的文章
[He, Yeping]的文章
[Wu, Jingzheng]的文章
百度学术
百度学术中相似的文章
[Wu, Genqiang]的文章
[He, Yeping]的文章
[Wu, Jingzheng]的文章
必应学术
必应学术中相似的文章
[Wu, Genqiang]的文章
[He, Yeping]的文章
[Wu, Jingzheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。