Clustering by Unified Principal Component Analysis and Fuzzy C-Means with Sparsity Constraint
Wang, Jikui1; Shi, Quanfu2; Yang, Zhengguo1; Nie, Feiping3
2020
会议名称20th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2020
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
卷号12453 LNCS
页码337-351
会议日期2020-10-02 - 2020-10-04
会议地点New York, NY, United states
出版地CHAM
出版者Springer Science and Business Media Deutschland GmbH
摘要For clustering high-dimensional data, most of the state-of-the-art algorithms often extract principal component beforehand, and then conduct a concrete clustering method. However, the two-stage strategy may deviate from assignments by directly optimizing the unified objective function. Different from the traditional methods, we propose a novel method referred to as clustering by unified principal component analysis and fuzzy c-means (UPF) for clustering high-dimensional data. Our model can explore underlying clustering structure in low-dimensional space and finish clustering simultaneously. In particular, we impose a L0-norm constraint on the membership matrix to make the matrix more sparse. To solve the model, we propose an effective iterative optimization algorithm. Extensive experiments on several benchmark data sets in comparison with two-stage algorithms are conducted to validate effectiveness of the proposed method. The experiments results demonstrate that the performance of our proposed method is superiority. © 2020, Springer Nature Switzerland AG.
关键词Cluster analysis Fuzzy systems Iterative methods Matrix algebra Parallel architectures High dimensional data Iterative optimization algorithms Low-dimensional spaces Objective functions Principal Components Sparsity constraints State-of-the-art algorithms Two-stage algorithm
DOI10.1007/978-3-030-60239-0_23
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000719292600023
EI入藏号20204309372689
原始文献类型Proceedings Paper
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/9672
专题信息工程与人工智能学院
党委研究生工作部(学位管理与研究生工作处)
作者单位1.College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou;
2.Gansu;
3.730020, China;
4.Degree Management and Graduate Office, Lanzhou University of Finance and Economics, Lanzhou;
5.Gansu;
6.730020, China;
7.School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xian;
8.Shaanxi;
9.710072, China
推荐引用方式
GB/T 7714
Wang, Jikui,Shi, Quanfu,Yang, Zhengguo,et al. Clustering by Unified Principal Component Analysis and Fuzzy C-Means with Sparsity Constraint[C]. CHAM:Springer Science and Business Media Deutschland GmbH,2020:337-351.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Jikui]的文章
[Shi, Quanfu]的文章
[Yang, Zhengguo]的文章
百度学术
百度学术中相似的文章
[Wang, Jikui]的文章
[Shi, Quanfu]的文章
[Yang, Zhengguo]的文章
必应学术
必应学术中相似的文章
[Wang, Jikui]的文章
[Shi, Quanfu]的文章
[Yang, Zhengguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。