作者刘秀婷
姓名汉语拼音liu xiu ting
学号2022000010008
培养单位兰州财经大学
电话15135731892
电子邮件1290132626@qq.com
入学年份2022-9
学位类别学术硕士
培养级别硕士研究生
学科门类管理学
一级学科名称管理科学与工程
学科方向
学科代码1201
第一导师姓名李强
第一导师姓名汉语拼音li qiang
第一导师单位兰州财经大学
第一导师职称教授
题名基于PET/CT图像的非小细胞肺癌患者淋巴结转移状态诊断研究
英文题名Research on Diagnosing Lymph Node Metastasis in Non-Small Cell Lung Cancer Patients Based on PET/CT Imaging
关键词非小细胞肺癌 淋巴结转移 PET/CT 多视图融合 病理标签
外文关键词Non-small cell lung cancer ; Lymph node metastasis ; PET/CT ; Multi-view fusion ; Pathological label
摘要

肺癌仍是发病率和致死率最高的癌症之一,非小细胞肺(non-small cell lung cancer ,NSCLC)是最常见的肺癌类型,约占所有肺癌病例的85%;随着癌症的发展,肿瘤会从原发部位转移到身体其他组织,即出现转移。淋巴结转移是最常见的转移途径之一,是决定肿瘤分期和预后的主要因素。准确评估淋巴结转移状况对患者的治疗、预后和生存状况具有重要意义。目前对非小细胞肺癌淋巴结转移进行诊断的主要方法是病理检查,这是一种有创检查,并且可能引起患者的并发症,增加患者的经济负担。部分患者由于转移位置等原因无法获得病理检测结果。为了解决这一问题,本文提出了使用PET/CT影像对非小细胞肺癌患者的淋巴结转移状态进行诊断,期望为医生提供参考。主要研究内容如下:

1)本研究利用多阶段深度学习技术,从PET/CT影像中识别NSCLC患者是否发生了淋巴结转移。该模型旨在结合部分患者的病理诊断结果和所有患者的放射科医生诊断结果,以识别NSCLC患者的淋巴结转移状态。在模型的第一阶段,我们使用内部训练集的有病理检测结果的数据集对模型进行预训练,并基于损失拟合高斯混合模型。第二阶段,利用缺乏病理结果但有医生诊断结果的数据集输入网络计算的损失和高斯混合模型的后验概率,从内部训练集中缺乏病理结果但有医生诊断结果的数据集中筛选出可靠的数据集。随后,我们结合有病理检测结果的数据和筛选出的可靠数据集对模型进行进一步训练。在第三阶段,引入5年生存率数据,以辅助评估不可靠数据的标签。最终,模型输出对淋巴结转移状态的诊断结果。该模型准确率为0.875,将模型结果辅助医生准确率达到0.911

2)为了对淋巴结转移状态进行深入预测细分为具体的N分期,本研究构建了深度学习框架。框架的目标是将正面和侧面的最大密度投影(Maximal Intensity Projection,MIP)特征以及影像组学特征整合在一起,以实现预测发生转移的NSCLC患者的具体N分期。研究中,网络采用ResNet18,深度学习特征的整合过程通过两个阶段的注意力机制进行整合优化。模型的预测性能通过深度学习和影像组学的特征结合而得到提升。实验结果显示,模型性能在增加了影像组学特征后得到提升,使用正面侧面特征融合模块也对模型性能提升有效。

英文摘要

Lung cancer remains one of the cancers with the highest incidence and mortality, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all lung cancer cases. As cancer progresses, the tumor metastasizes from the original site to other tissues in the body, that is, metastasis occurs. Lymph node metastasis is one of the most common routes of metastasis, and it is a major factor in determining tumor stage and prognosis. Accurate evaluation of lymph node metastasis is of great significance to the treatment, prognosis and survival of patients. At present, the main method for the diagnosis of lymph node metastasis of NSCLC is pathological examination, which is an invasive examination and may cause complications and increase the financial burden of patients. Some patients could not obtain pathological test results due to the location of metastasis. To solve this problem, this dissertation proposes to use PET/CT imaging to diagnose lymph node metastasis status in patients with non-small cell lung cancer. It is expected to provide reference for doctors. The main research contents are as follows:

(1) In this study, multi-stage deep learning techniques were used to identify lymph node metastasis in NSCLC patients from PET/CT images. The model was designed to combine pathological findings from some patients with radiologist findings from all patients to identify lymph node metastatic status in NSCLC patients. In the first stage of the model, we train the model using the data set with pathological detection results of the internal training set, and fit the Gaussian mixture model based on loss. In the second stage, data sets lacking pathology results but with physician diagnoses are used to filter the data according to the loss calculated by the data input network and the posterior probability of the Gaussian mixture model. Reliable data sets were screened from internal training sets that lacked pathology results but had physician diagnoses. The model was then further trained by combining the data with the pathologic findings and the selected reliable data sets. In the third phase, 5-year survival data was introduced to assist in the evaluation of unreliable data labels. Finally, the model outputs the diagnosis of lymph node metastasis status. The accuracy of the model was 0.875, and the accuracy of the model results assisted doctors reached 0.911.

(2) In order to deeply predict the status of lymph node metastasis and subdivide it into specific N stages, this study constructed a deep learning framework. The goal of the framework is to integrate frontal and lateral Maximal Intensity Projection (MIP) features with imaging omics features to predict the specific N stage of NSCLC patients. In this study, the network adopts ResNet18, and the integration process of deep learning features is optimized through a two-stage attention mechanism. By combining deep learning with radiomic features, we enhanced the model's predictive performance. The experimental results show that the performance of the model is improved after the addition of image radiomic features, and the use of front and side feature fusion module also has a certain effect on the performance of the model.

学位类型硕士
答辩日期2025-05-18
学位授予地点甘肃省兰州市
语种中文
论文总页数68
参考文献总数61
馆藏号0007144
保密级别公开
中图分类号C93/108
文献类型学位论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/39947
专题信息工程与人工智能学院
推荐引用方式
GB/T 7714
刘秀婷. 基于PET/CT图像的非小细胞肺癌患者淋巴结转移状态诊断研究[D]. 甘肃省兰州市. 兰州财经大学,2025.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2022000010008.pdf(3704KB)学位论文 开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[刘秀婷]的文章
百度学术
百度学术中相似的文章
[刘秀婷]的文章
必应学术
必应学术中相似的文章
[刘秀婷]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2022000010008.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。