Robust Low-Rank Tensor Recovery Using a Self-Adaptive Learnable Weighted Tensor Total Variation Method
Yang, Fanyin1; Zheng, Bing1; Zhao, Ruijuan2; Liu, Guimin1
2025-04
发表期刊NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
卷号32期号:2
摘要Tensor robust principal component analysis (TRPCA) is a fundamental technique for recovering low-rank and sparse components from multidimensional data corrupted by noise or outliers. Recently, a method based on tensor-correlated total variation (t-CTV) was introduced, where t-CTV serves as a regularizer to simultaneously encode both the low-rank structure and local smoothness of the tensor, eliminating the need for parameter tuning. However, this method may introduce bias when encoding the low-rank structure of the data, which limits its recovery performance. To address this limitation, we propose a novel weighted t-CTV pseudo-norm that more accurately captures both the low-rank structure and local smoothness of a tensor. Building on this, we introduce the self-adaptive learnable weighted t-CTV (SALW-CTV) method for TRPCA. In contrast to traditional TRPCA methods that use the suboptimal & ell;(1)-norm for noise filtering, our method incorporates an improved weighted & ell;(1)-norm to further enhance recovery performance. Additionally, we design a data-driven, self-adaptive learnable weight selection scheme that dynamically determines the optimal weights for both the weighted t-CTV and the weighted & ell;(1)-norm. To solve the resulting optimization problem, we develop an efficient algorithm and analyze its computational complexity and convergence. Extensive numerical experiments on various datasets validate the superior performance of our proposed method compared to existing state-of-the-art approaches.
关键词local smoothness low-rank prior self-adaptive learnable weight selection scheme tensor robust principal component analysis weighted & ell (1)-norm weighted t-CTV
DOI10.1002/nla.70013
收录类别SCIE
ISSN1070-5325
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:001447842500001
出版者WILEY
原始文献类型Article
EISSN1099-1506
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38932
专题信息工程与人工智能学院
通讯作者Zheng, Bing
作者单位1.Lanzhou Univ, Sch Math & Stat, Lanzhou, Gansu, Peoples R China;
2.Lanzhou Univ Finance & Econ, Sch Informat Engn & Artificial Intelligence, Lanzhou, Gansu, Peoples R China
推荐引用方式
GB/T 7714
Yang, Fanyin,Zheng, Bing,Zhao, Ruijuan,et al. Robust Low-Rank Tensor Recovery Using a Self-Adaptive Learnable Weighted Tensor Total Variation Method[J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS,2025,32(2).
APA Yang, Fanyin,Zheng, Bing,Zhao, Ruijuan,&Liu, Guimin.(2025).Robust Low-Rank Tensor Recovery Using a Self-Adaptive Learnable Weighted Tensor Total Variation Method.NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS,32(2).
MLA Yang, Fanyin,et al."Robust Low-Rank Tensor Recovery Using a Self-Adaptive Learnable Weighted Tensor Total Variation Method".NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 32.2(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Fanyin]的文章
[Zheng, Bing]的文章
[Zhao, Ruijuan]的文章
百度学术
百度学术中相似的文章
[Yang, Fanyin]的文章
[Zheng, Bing]的文章
[Zhao, Ruijuan]的文章
必应学术
必应学术中相似的文章
[Yang, Fanyin]的文章
[Zheng, Bing]的文章
[Zhao, Ruijuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。