Enhancing Student Engagement in New Business Discipline Experimental Teaching through Smart Resource Allocation Systems
Luo, Fu1; Zhu, Yingying2; Guo, Xuan1; Deng, Chunhong1; Zhang, Zheng1
2024
会议名称2024 Cross Strait Radio Science and Wireless Technology Conference
会议录名称2024 CROSS STRAIT RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC 2024
页码531-534
会议日期NOV 04-07, 2024
会议地点PEOPLES R CHINA
出版地NEW YORK
出版者IEEE
摘要This paper designs and validates an intelligent resource allocation system aimed at optimizing resource distribution in business experimentation teaching through the use of machine learning algorithms (Random Forest). The system dynamically adjusts teaching resources based on the analysis of student behavior data, including task completion time, test scores, and engagement, to provide personalized learning support. The experiment involved 52 students divided into high-performance, moderate-performance, and low -performance groups, with student behavior data collected through the Superstar Learning platform. The results demonstrate that the intelligent resource allocation system significantly improved student engagement and learning outcomes, particularly for low -performance students, who showed substantial improvement in both engagement and test scores. Additionally, the system's performance evaluation revealed high resource allocation efficiency and rapid feedback response times across different scenarios. The paper also discusses the advantages and limitations of the system, confirming its potential application in real-world teaching.
关键词Intelligent Resource Allocation System Machine Learning Random Forest Personalized Teaching Engagement Learning Outcomes Superstar Learning Platform
DOI10.1109/CSRSWTC64338.2024.10811649
收录类别CPCI-S
语种英语
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001414377800176
原始文献类型Proceedings Paper
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38817
专题工商管理学院
经济学院
通讯作者Zhu, Yingying
作者单位1.Guangdong Univ Sci & Technol, Sch Management, Dongguan 523083, Peoples R China;
2.LanZhou Univ Finance & Econ, Lanzhou 730020, Peoples R China
通讯作者单位兰州财经大学
推荐引用方式
GB/T 7714
Luo, Fu,Zhu, Yingying,Guo, Xuan,et al. Enhancing Student Engagement in New Business Discipline Experimental Teaching through Smart Resource Allocation Systems[C]. NEW YORK:IEEE,2024:531-534.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Luo, Fu]的文章
[Zhu, Yingying]的文章
[Guo, Xuan]的文章
百度学术
百度学术中相似的文章
[Luo, Fu]的文章
[Zhu, Yingying]的文章
[Guo, Xuan]的文章
必应学术
必应学术中相似的文章
[Luo, Fu]的文章
[Zhu, Yingying]的文章
[Guo, Xuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。