Enhancing Student Engagement in New Business Discipline Experimental Teaching through Smart Resource Allocation Systems | |
Luo, Fu1; Zhu, Yingying2![]() ![]() | |
2024 | |
会议名称 | 2024 Cross Strait Radio Science and Wireless Technology Conference |
会议录名称 | 2024 CROSS STRAIT RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC 2024
![]() |
页码 | 531-534 |
会议日期 | NOV 04-07, 2024 |
会议地点 | PEOPLES R CHINA |
出版地 | NEW YORK |
出版者 | IEEE |
摘要 | This paper designs and validates an intelligent resource allocation system aimed at optimizing resource distribution in business experimentation teaching through the use of machine learning algorithms (Random Forest). The system dynamically adjusts teaching resources based on the analysis of student behavior data, including task completion time, test scores, and engagement, to provide personalized learning support. The experiment involved 52 students divided into high-performance, moderate-performance, and low -performance groups, with student behavior data collected through the Superstar Learning platform. The results demonstrate that the intelligent resource allocation system significantly improved student engagement and learning outcomes, particularly for low -performance students, who showed substantial improvement in both engagement and test scores. Additionally, the system's performance evaluation revealed high resource allocation efficiency and rapid feedback response times across different scenarios. The paper also discusses the advantages and limitations of the system, confirming its potential application in real-world teaching. |
关键词 | Intelligent Resource Allocation System Machine Learning Random Forest Personalized Teaching Engagement Learning Outcomes Superstar Learning Platform |
DOI | 10.1109/CSRSWTC64338.2024.10811649 |
收录类别 | CPCI-S |
语种 | 英语 |
WOS研究方向 | Engineering ; Telecommunications |
WOS类目 | Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:001414377800176 |
原始文献类型 | Proceedings Paper |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/38817 |
专题 | 工商管理学院 经济学院 |
通讯作者 | Zhu, Yingying |
作者单位 | 1.Guangdong Univ Sci & Technol, Sch Management, Dongguan 523083, Peoples R China; 2.LanZhou Univ Finance & Econ, Lanzhou 730020, Peoples R China |
通讯作者单位 | 兰州财经大学 |
推荐引用方式 GB/T 7714 | Luo, Fu,Zhu, Yingying,Guo, Xuan,et al. Enhancing Student Engagement in New Business Discipline Experimental Teaching through Smart Resource Allocation Systems[C]. NEW YORK:IEEE,2024:531-534. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Luo, Fu]的文章 |
[Zhu, Yingying]的文章 |
[Guo, Xuan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Luo, Fu]的文章 |
[Zhu, Yingying]的文章 |
[Guo, Xuan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Luo, Fu]的文章 |
[Zhu, Yingying]的文章 |
[Guo, Xuan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论