Curb parking occupancy prediction based on real-time fusion of multi-view spatial-temporal information using graph attention gated networks
Qian, Chonghui1,2; Yang, Kexu1; He, Jiangping3; Peng, Xiaojing4; Huang, Hengjun1,2
2025-03
在线发表日期2025-01
发表期刊APPLIED SOFT COMPUTING
卷号171
摘要Effective curb parking management is crucial for reducing traffic congestion, minimizing cruising time, and lowering pollution in smart cities through accurate, timely occupancy predictions. However, traditional spatialtemporal fusion methods often rely on sequential concatenation, leading to spatial information lag and limited real-time fusion. These methods also overlook critical spatial features for curb parking, such as accessibility metrics. To address these limitations, this study introduces the Multi-View Graph Attention Gated Recurrent Unit (MGA-GRU) model, which innovatively fuses spatial-temporal data via graph attention gated networks to enhance curb parking occupancy predictions. Validated on a curb parking dataset from Lanzhou city, China (July 2019 to December 2020), the MGA-GRU model significantly outperforms baseline methods in both short-term and long-term predictions. Ablation experiments demonstrate that each component-the graph attention gates, multi-view graph structure, and real-time fusion-significantly enhances the model's predictive accuracy, highlighting their collective importance in advancing occupancy prediction. By refining spatial-temporal fusion unit, the MGA-GRU model offers vital insights for optimizing curb parking resources and supports efficient traffic management and sustainable urban development.
关键词Curb parking occupancy prediction Graph attention Gated recurrent unit Data fusion Multi-view graph
DOI10.1016/j.asoc.2025.112781
收录类别SCIE ; EI
ISSN1568-4946
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:001414667500001
出版者ELSEVIER
EI入藏号20250417743502
EI主题词Traffic congestion
EI分类号1101 ; 1106.2 ; 432.3 Cargo Highway Transportation ; 662 Automobiles and Smaller Vehicles
原始文献类型Article
EISSN1872-9681
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38746
专题统计与数据科学学院
工商管理学院
信息工程与人工智能学院
通讯作者Huang, Hengjun
作者单位1.Lanzhou Univ Finance & Econ, Sch Stat & Data Sci, Lanzhou 730020, Peoples R China;
2.Key Lab Digital Econ & Social Comp Sci Gansu, Lanzhou 730020, Peoples R China;
3.Lanzhou Univ Finance & Econ, Sch Informat Engn & Artificial Intelligence, Lanzhou 730020, Peoples R China;
4.Lanzhou Univ Finance & Econ, Sch Business Adm, Lanzhou 730020, Peoples R China
第一作者单位统计与数据科学学院
通讯作者单位统计与数据科学学院
推荐引用方式
GB/T 7714
Qian, Chonghui,Yang, Kexu,He, Jiangping,et al. Curb parking occupancy prediction based on real-time fusion of multi-view spatial-temporal information using graph attention gated networks[J]. APPLIED SOFT COMPUTING,2025,171.
APA Qian, Chonghui,Yang, Kexu,He, Jiangping,Peng, Xiaojing,&Huang, Hengjun.(2025).Curb parking occupancy prediction based on real-time fusion of multi-view spatial-temporal information using graph attention gated networks.APPLIED SOFT COMPUTING,171.
MLA Qian, Chonghui,et al."Curb parking occupancy prediction based on real-time fusion of multi-view spatial-temporal information using graph attention gated networks".APPLIED SOFT COMPUTING 171(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Qian, Chonghui]的文章
[Yang, Kexu]的文章
[He, Jiangping]的文章
百度学术
百度学术中相似的文章
[Qian, Chonghui]的文章
[Yang, Kexu]的文章
[He, Jiangping]的文章
必应学术
必应学术中相似的文章
[Qian, Chonghui]的文章
[Yang, Kexu]的文章
[He, Jiangping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。