A robust self-training algorithm based on relative node graph
Wang, Jikui1; Duan, Huiyu1; Zhang, Cuihong1; Nie, Feiping2
2025-01
发表期刊APPLIED INTELLIGENCE
卷号55期号:1
摘要Self-training algorithm is a well-known framework of semi-supervised learning. How to select high-confidence samples is the key step for self-training algorithm. If high-confidence examples with incorrect labels are employed to train the classifier, the error will get worse during iterations. To improve the quality of high-confidence samples, a novel data editing technique termed Relative Node Graph Editing (RNGE) is put forward. Say concretely, mass estimation is used to calculate the density and peak of each sample to build a prototype tree to reveal the underlying spatial structure of the data. Then, we define the Relative Node Graph (RNG) for each sample. Finally, the mislabeled samples in the candidate high-confidence sample set are identified by hypothesis test based on RNG. Combined above, we propose a Robust Self-training Algorithm based on Relative Node Graph (STRNG), which uses RNGE to identify mislabeled samples and edit them. The experimental results show that the proposed algorithm can improve the performance of the self-training algorithm.
关键词Semi-supervised learning High-confidence samples Self-training Data editing
DOI10.1007/s10489-024-06062-0
收录类别SCIE ; EI
ISSN0924-669X
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001355646600001
出版者SPRINGER
EI入藏号20244717399144
EI主题词Self-supervised learning
EI分类号1101.2 ; 1101.2.1 ; 1103.3 ; 1105.3 ; 1201.8
原始文献类型Article
EISSN1573-7497
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38334
专题信息工程与人工智能学院
通讯作者Wang, Jikui
作者单位1.Lanzhou Univ Finance & Econ, Coll Informat Engn & Artificial Intelligence, Lanzhou 730020, Gansu, Peoples R China;
2.Northwestern Polytech Univ, Sch Artificial Intelligence OPt & Elect IOPEN, Xian 710072, Shanxi, Peoples R China
第一作者单位兰州财经大学
通讯作者单位兰州财经大学
推荐引用方式
GB/T 7714
Wang, Jikui,Duan, Huiyu,Zhang, Cuihong,et al. A robust self-training algorithm based on relative node graph[J]. APPLIED INTELLIGENCE,2025,55(1).
APA Wang, Jikui,Duan, Huiyu,Zhang, Cuihong,&Nie, Feiping.(2025).A robust self-training algorithm based on relative node graph.APPLIED INTELLIGENCE,55(1).
MLA Wang, Jikui,et al."A robust self-training algorithm based on relative node graph".APPLIED INTELLIGENCE 55.1(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Jikui]的文章
[Duan, Huiyu]的文章
[Zhang, Cuihong]的文章
百度学术
百度学术中相似的文章
[Wang, Jikui]的文章
[Duan, Huiyu]的文章
[Zhang, Cuihong]的文章
必应学术
必应学术中相似的文章
[Wang, Jikui]的文章
[Duan, Huiyu]的文章
[Zhang, Cuihong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。