THRESHOLD PROPAGATION IN A MAY-NOWAK TYPE DEGENERATE REACTION-DIFFUSION VIRAL MODEL ON PERIODICALLY EVOLVING DOMAIN
Wang, Jie1; Song, Pengyu1; Wang, Shuang-Ming2; Zhang, Yi1
2024-10
发表期刊DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B
卷号30期号:4页码:1415-1440
摘要. The current paper is concerned with a time-periodic May-Nowak type degenerate reaction-diffusion model introduced to depict the propagation of viruses on a periodically evolving domain. Specifically, the key basic reproduction ratio R-0 is introduced for the current model, which serves as a fundamental threshold to distinguish the long-term viral propagation. In fact, it is adjacently demonstrated that the virus-free equilibrium is globally attractive provided R-0 <= 1, while the virus is uniformly persistent provided R-0 > 1. Furthermore, the global attractivity of the virus-present equilibrium is still established. Other than the method of upper and lower solutions routinely employed by earlier researchers, we are inclined to adopt some novel dynamic system approaches and periodic principal eigenvalue theories developed recently to achieve our key investigations due to the remarkable non-monotonicity of the system involved. The current study sheds light on the mechanisms underlying the viral spread, and provides some insights into the dynamics of epidemics in periodically evolving domains.
关键词Degenerate reaction-diffusion system May-Nowak type viral model periodically evolving domain basic reproduction ratio threshold dynamics
DOI10.3934/dcdsb.2024134
收录类别SCIE
ISSN1531-3492
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:001335758700001
出版者AMER INST MATHEMATICAL SCIENCES-AIMS
原始文献类型Article ; Early Access
EISSN1553-524X
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38151
专题信息工程与人工智能学院
通讯作者Wang, Jie
作者单位1.Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China;
2.Lanzhou Univ Finance & Econ, Sch Finance, Lanzhou 730020, Gansu, Peoples R China
推荐引用方式
GB/T 7714
Wang, Jie,Song, Pengyu,Wang, Shuang-Ming,et al. THRESHOLD PROPAGATION IN A MAY-NOWAK TYPE DEGENERATE REACTION-DIFFUSION VIRAL MODEL ON PERIODICALLY EVOLVING DOMAIN[J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B,2024,30(4):1415-1440.
APA Wang, Jie,Song, Pengyu,Wang, Shuang-Ming,&Zhang, Yi.(2024).THRESHOLD PROPAGATION IN A MAY-NOWAK TYPE DEGENERATE REACTION-DIFFUSION VIRAL MODEL ON PERIODICALLY EVOLVING DOMAIN.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B,30(4),1415-1440.
MLA Wang, Jie,et al."THRESHOLD PROPAGATION IN A MAY-NOWAK TYPE DEGENERATE REACTION-DIFFUSION VIRAL MODEL ON PERIODICALLY EVOLVING DOMAIN".DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B 30.4(2024):1415-1440.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Jie]的文章
[Song, Pengyu]的文章
[Wang, Shuang-Ming]的文章
百度学术
百度学术中相似的文章
[Wang, Jie]的文章
[Song, Pengyu]的文章
[Wang, Shuang-Ming]的文章
必应学术
必应学术中相似的文章
[Wang, Jie]的文章
[Song, Pengyu]的文章
[Wang, Shuang-Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。