Institutional Repository of School of Information Engineering and Artificial Intelligence
THRESHOLD PROPAGATION IN A MAY-NOWAK TYPE DEGENERATE REACTION-DIFFUSION VIRAL MODEL ON PERIODICALLY EVOLVING DOMAIN | |
Wang, Jie1; Song, Pengyu1; Wang, Shuang-Ming2; Zhang, Yi1 | |
2024-10 | |
发表期刊 | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B |
卷号 | 30期号:4页码:1415-1440 |
摘要 | . The current paper is concerned with a time-periodic May-Nowak type degenerate reaction-diffusion model introduced to depict the propagation of viruses on a periodically evolving domain. Specifically, the key basic reproduction ratio R-0 is introduced for the current model, which serves as a fundamental threshold to distinguish the long-term viral propagation. In fact, it is adjacently demonstrated that the virus-free equilibrium is globally attractive provided R-0 <= 1, while the virus is uniformly persistent provided R-0 > 1. Furthermore, the global attractivity of the virus-present equilibrium is still established. Other than the method of upper and lower solutions routinely employed by earlier researchers, we are inclined to adopt some novel dynamic system approaches and periodic principal eigenvalue theories developed recently to achieve our key investigations due to the remarkable non-monotonicity of the system involved. The current study sheds light on the mechanisms underlying the viral spread, and provides some insights into the dynamics of epidemics in periodically evolving domains. |
关键词 | Degenerate reaction-diffusion system May-Nowak type viral model periodically evolving domain basic reproduction ratio threshold dynamics |
DOI | 10.3934/dcdsb.2024134 |
收录类别 | SCIE |
ISSN | 1531-3492 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:001335758700001 |
出版者 | AMER INST MATHEMATICAL SCIENCES-AIMS |
原始文献类型 | Article ; Early Access |
EISSN | 1553-524X |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/38151 |
专题 | 信息工程与人工智能学院 |
通讯作者 | Wang, Jie |
作者单位 | 1.Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China; 2.Lanzhou Univ Finance & Econ, Sch Finance, Lanzhou 730020, Gansu, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Jie,Song, Pengyu,Wang, Shuang-Ming,et al. THRESHOLD PROPAGATION IN A MAY-NOWAK TYPE DEGENERATE REACTION-DIFFUSION VIRAL MODEL ON PERIODICALLY EVOLVING DOMAIN[J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B,2024,30(4):1415-1440. |
APA | Wang, Jie,Song, Pengyu,Wang, Shuang-Ming,&Zhang, Yi.(2024).THRESHOLD PROPAGATION IN A MAY-NOWAK TYPE DEGENERATE REACTION-DIFFUSION VIRAL MODEL ON PERIODICALLY EVOLVING DOMAIN.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B,30(4),1415-1440. |
MLA | Wang, Jie,et al."THRESHOLD PROPAGATION IN A MAY-NOWAK TYPE DEGENERATE REACTION-DIFFUSION VIRAL MODEL ON PERIODICALLY EVOLVING DOMAIN".DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B 30.4(2024):1415-1440. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论