Self-Training Algorithm With Block Similar Neighbor Editing
Bai, Wenwang1; Zhang, Cuihong2; Yang, Zhengguo2; Yang, He1
2024
发表期刊IEEE ACCESS
卷号12页码:110418-110431
摘要In the real world, there are only a small amount of data with labels. To make full use of the potential structural information of unlabeled data to train a better classifier, researchers have proposed many semi-supervised learning algorithms. Among these algorithms, self-training is one of the most widely used semi-supervised learning frameworks due to its simplicity. How to select high-confidence samples is a crucial step for self-training. If the misclassified samples are selected as high-confidence samples, this error will be amplified in the iterative process, which affects the performance of the final classifier. To alleviate the impact of this problem, this paper proposes a self-training algorithm with block-similar neighbor editing (STBSNE). STBSNE calculates the distance between samples by the block-based dissimilarity measure, which improves the classification performance on high-dimensional data sets. STBSNE defines the block-estimated neighbor relationship, builds the block-estimated neighbor relationship graph, and proposes the block estimated neighbor editing method to identify outliers and noise points, and edits them to improve the quality of the high-confidence sample selected. Experimental results on 16 benchmark data sets verify the superior performance of the proposed STBSNE compared with seven state-of-the-art algorithms.
关键词Iterative methods Semisupervised learning Training Prototypes Prediction algorithms Noise measurement Euclidean distance Semi-supervised learning self-training classification block similar neighbor data editing
DOI10.1109/ACCESS.2024.3440915
收录类别SCIE ; EI
ISSN2169-3536
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001300976800001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20243316865623
EI主题词Classification (of information)
EI分类号716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4.2 Machine Learning ; 751.4 Acoustic Noise ; 903.1 Information Sources and Analysis ; 921.6 Numerical Methods
原始文献类型Article
EISSN2169-3536
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/37656
专题信息工程与人工智能学院
通讯作者Yang, Zhengguo
作者单位1.Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China;
2.Lanzhou Univ Finance & Econ, Sch Informat Engn & Artificial Intelligence, Lanzhou 730000, Gansu, Peoples R China
通讯作者单位兰州财经大学
推荐引用方式
GB/T 7714
Bai, Wenwang,Zhang, Cuihong,Yang, Zhengguo,et al. Self-Training Algorithm With Block Similar Neighbor Editing[J]. IEEE ACCESS,2024,12:110418-110431.
APA Bai, Wenwang,Zhang, Cuihong,Yang, Zhengguo,&Yang, He.(2024).Self-Training Algorithm With Block Similar Neighbor Editing.IEEE ACCESS,12,110418-110431.
MLA Bai, Wenwang,et al."Self-Training Algorithm With Block Similar Neighbor Editing".IEEE ACCESS 12(2024):110418-110431.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Bai, Wenwang]的文章
[Zhang, Cuihong]的文章
[Yang, Zhengguo]的文章
百度学术
百度学术中相似的文章
[Bai, Wenwang]的文章
[Zhang, Cuihong]的文章
[Yang, Zhengguo]的文章
必应学术
必应学术中相似的文章
[Bai, Wenwang]的文章
[Zhang, Cuihong]的文章
[Yang, Zhengguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。