Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework
Guo, Jingjun1,2; Kang, Weiyi1; Wang, Yubing1
2024-07
在线发表日期2024-05
发表期刊Technological Forecasting and Social Change
卷号204
摘要This article introduces a dynamic ensemble framework that integrates parametric and non-parametric pricing models. Within this framework, we propose a time-varying parametric pricing model optimized using artificial intelligence algorithms. Additionally, we construct a non-parametric pricing model using a 2-dimensional convolutional neural network (2D-CNN) to capture the interactions among options, enhancing the existing non-parametric pricing model. Validation using China's SSE 50 ETF options trading data reveals several key findings: Firstly, the dynamic integration method proposed in this study not only improves prediction accuracy but also enhances stability. Secondly, previous parametric pricing models do not effectively utilize their pricing performance, while our proposed time-varying parametric pricing model significantly enhances accuracy. Lastly, the 2D-CNN model, which considers interactions among options trades, proves to be reasonable and effective, outperforming common non-parametric pricing models. The dynamic ensemble framework proposed in this study effectively combines the strengths of both parametric and non-parametric pricing models. This research serves as an important reference for risk managers, institutional investors, and other stakeholders. Furthermore, it provides valuable research ideas for future scholars in the field. © 2023
关键词Convolutional neural networks Costs Deep learning Electronic trading Financial markets Forecasting Investments Neural network models Parameter estimation-Artificial intelligence algorithms Deep learning Dynamic ensemble Nonparametrics Option price Option price forecasting Options pricing Parameter optimization Price forecasting Pricing models
DOI10.1016/j.techfore.2024.123429
收录类别EI ; SSCI
ISSN0040-1625
语种英语
WOS研究方向Business & Economics ; Public Administration
WOS类目Business ; Regional & Urban Planning
WOS记录号WOS:001237878300001
出版者Elsevier Inc.
EI入藏号20241916030473 ; Commerce
EI主题词Commerce
EI分类号461.4 Ergonomics and Human Factors Engineering ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 911 Cost and Value Engineering ; Industrial Economics
原始文献类型Journal article (JA)
EISSN1873-5509
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/36248
专题统计与数据科学学院
通讯作者Kang, Weiyi
作者单位1.School of Statistics and Data Science, Lanzhou University of Finance and Economics, Lanzhou; 730020, China;
2.Center for Quantitative Analysis of Gansu Economic Development, Lanzhou University of Finance and Economics, Lanzhou; 730020, China
第一作者单位统计与数据科学学院;  兰州财经大学
通讯作者单位统计与数据科学学院
推荐引用方式
GB/T 7714
Guo, Jingjun,Kang, Weiyi,Wang, Yubing. Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework[J]. Technological Forecasting and Social Change,2024,204.
APA Guo, Jingjun,Kang, Weiyi,&Wang, Yubing.(2024).Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework.Technological Forecasting and Social Change,204.
MLA Guo, Jingjun,et al."Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework".Technological Forecasting and Social Change 204(2024).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo, Jingjun]的文章
[Kang, Weiyi]的文章
[Wang, Yubing]的文章
百度学术
百度学术中相似的文章
[Guo, Jingjun]的文章
[Kang, Weiyi]的文章
[Wang, Yubing]的文章
必应学术
必应学术中相似的文章
[Guo, Jingjun]的文章
[Kang, Weiyi]的文章
[Wang, Yubing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。