Institutional Repository of School of Statistics
Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework | |
Guo, Jingjun1,2; Kang, Weiyi1; Wang, Yubing1 | |
2024-07 | |
在线发表日期 | 2024-05 |
发表期刊 | Technological Forecasting and Social Change |
卷号 | 204 |
摘要 | This article introduces a dynamic ensemble framework that integrates parametric and non-parametric pricing models. Within this framework, we propose a time-varying parametric pricing model optimized using artificial intelligence algorithms. Additionally, we construct a non-parametric pricing model using a 2-dimensional convolutional neural network (2D-CNN) to capture the interactions among options, enhancing the existing non-parametric pricing model. Validation using China's SSE 50 ETF options trading data reveals several key findings: Firstly, the dynamic integration method proposed in this study not only improves prediction accuracy but also enhances stability. Secondly, previous parametric pricing models do not effectively utilize their pricing performance, while our proposed time-varying parametric pricing model significantly enhances accuracy. Lastly, the 2D-CNN model, which considers interactions among options trades, proves to be reasonable and effective, outperforming common non-parametric pricing models. The dynamic ensemble framework proposed in this study effectively combines the strengths of both parametric and non-parametric pricing models. This research serves as an important reference for risk managers, institutional investors, and other stakeholders. Furthermore, it provides valuable research ideas for future scholars in the field. © 2023 |
关键词 | Convolutional neural networks Costs Deep learning Electronic trading Financial markets Forecasting Investments Neural network models Parameter estimation-Artificial intelligence algorithms Deep learning Dynamic ensemble Nonparametrics Option price Option price forecasting Options pricing Parameter optimization Price forecasting Pricing models |
DOI | 10.1016/j.techfore.2024.123429 |
收录类别 | EI ; SSCI |
ISSN | 0040-1625 |
语种 | 英语 |
WOS研究方向 | Business & Economics ; Public Administration |
WOS类目 | Business ; Regional & Urban Planning |
WOS记录号 | WOS:001237878300001 |
出版者 | Elsevier Inc. |
EI入藏号 | 20241916030473 ; Commerce |
EI主题词 | Commerce |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 911 Cost and Value Engineering ; Industrial Economics |
原始文献类型 | Journal article (JA) |
EISSN | 1873-5509 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/36248 |
专题 | 统计与数据科学学院 |
通讯作者 | Kang, Weiyi |
作者单位 | 1.School of Statistics and Data Science, Lanzhou University of Finance and Economics, Lanzhou; 730020, China; 2.Center for Quantitative Analysis of Gansu Economic Development, Lanzhou University of Finance and Economics, Lanzhou; 730020, China |
第一作者单位 | 统计与数据科学学院; 兰州财经大学 |
通讯作者单位 | 统计与数据科学学院 |
推荐引用方式 GB/T 7714 | Guo, Jingjun,Kang, Weiyi,Wang, Yubing. Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework[J]. Technological Forecasting and Social Change,2024,204. |
APA | Guo, Jingjun,Kang, Weiyi,&Wang, Yubing.(2024).Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework.Technological Forecasting and Social Change,204. |
MLA | Guo, Jingjun,et al."Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework".Technological Forecasting and Social Change 204(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论