Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material
Wang, Shaojun1; Huang, Yiru2; Hu, Wenguang2; Zhang, Lei2
2024-05-29
发表期刊NPJ COMPUTATIONAL MATERIALS
卷号10期号:1
摘要Optoelectronic stability of halide perovskite material in hostile conditions such as water is rather limited, preventing them from further industrial deployment. Here, we optimize and perform machine learning analysis on CH3NH3PbI3 materials with additives, solvents and post-treatment molecules using combined experimental and data-driven methods. A champion system consisting of a compatible tertiary molecular combination 'calcein+PbBr2 + DMSO' active at diverse surfaces is identified, delivering a large aqueous photoelectrochemical (PEC) photocurrent of 10-5 A/cm2 and an improved aqueous stability of 92.5%. Subsequently, machine interpretation is provided to decouple the multi-molecule contributions with the assistance of genetic programming (GP) and extra-trees (ET) machine learning models, highlighting the intricate molecular features for the target outputs. The post-hoc density functional theory (DFT) calculation suggests the presence of multiple hydrogen bond and anionpi surface interactions to stabilize the interfacial structures. The present 'PEC + GP + ET + DFT' approach is suggested to be an effective approach to design and comprehensively evaluate molecule-modified materials.
关键词Additives Density functional theory Design for testability Genetic algorithms Hydrogen bonds Lead compounds Machine learning Molecules Perovskite Photoelectrochemical cells Condition Data-driven methods Data-driven optimization Extra-trees Halide perovskites Industrial deployment Machine-learning Photoelectrochemicals Post treatment Solvent treatment
DOI10.1038/s41524-024-01297-4
收录类别SCIE ; EI
语种英语
WOS研究方向Chemistry ; Materials Science
WOS类目Chemistry, Physical ; Materials Science, Multidisciplinary
WOS记录号WOS:001234702700001
出版者NATURE PORTFOLIO
EI入藏号20242316212332
EI主题词Genetic programming
EI分类号482.2 Minerals ; 702.1 Electric Batteries ; 723.1 Computer Programming ; 723.4 Artificial Intelligence ; 801.4 Physical Chemistry ; 803 Chemical Agents and Basic Industrial Chemicals ; 922.1 Probability Theory ; 931.3 Atomic and Molecular Physics ; 931.4 Quantum Theory ; Quantum Mechanics
原始文献类型Article
EISSN2057-3960
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/36242
专题信息工程与人工智能学院
通讯作者Zhang, Lei
作者单位1.Lanzhou Univ Finance & Econ, Dept Elect Commerce, Lanzhou, Gansu, Peoples R China;
2.Nanjing Univ Informat Sci & Technol, Sch Chem & Mat Sci, Dept Mat Phys, Nanjing, Peoples R China
第一作者单位兰州财经大学
推荐引用方式
GB/T 7714
Wang, Shaojun,Huang, Yiru,Hu, Wenguang,et al. Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material[J]. NPJ COMPUTATIONAL MATERIALS,2024,10(1).
APA Wang, Shaojun,Huang, Yiru,Hu, Wenguang,&Zhang, Lei.(2024).Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material.NPJ COMPUTATIONAL MATERIALS,10(1).
MLA Wang, Shaojun,et al."Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material".NPJ COMPUTATIONAL MATERIALS 10.1(2024).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Shaojun]的文章
[Huang, Yiru]的文章
[Hu, Wenguang]的文章
百度学术
百度学术中相似的文章
[Wang, Shaojun]的文章
[Huang, Yiru]的文章
[Hu, Wenguang]的文章
必应学术
必应学术中相似的文章
[Wang, Shaojun]的文章
[Huang, Yiru]的文章
[Hu, Wenguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。