Institutional Repository of School of Information Engineering and Artificial Intelligence
Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material | |
Wang, Shaojun1; Huang, Yiru2; Hu, Wenguang2; Zhang, Lei2 | |
2024-05-29 | |
发表期刊 | NPJ COMPUTATIONAL MATERIALS |
卷号 | 10期号:1 |
摘要 | Optoelectronic stability of halide perovskite material in hostile conditions such as water is rather limited, preventing them from further industrial deployment. Here, we optimize and perform machine learning analysis on CH3NH3PbI3 materials with additives, solvents and post-treatment molecules using combined experimental and data-driven methods. A champion system consisting of a compatible tertiary molecular combination 'calcein+PbBr2 + DMSO' active at diverse surfaces is identified, delivering a large aqueous photoelectrochemical (PEC) photocurrent of 10-5 A/cm2 and an improved aqueous stability of 92.5%. Subsequently, machine interpretation is provided to decouple the multi-molecule contributions with the assistance of genetic programming (GP) and extra-trees (ET) machine learning models, highlighting the intricate molecular features for the target outputs. The post-hoc density functional theory (DFT) calculation suggests the presence of multiple hydrogen bond and anionpi surface interactions to stabilize the interfacial structures. The present 'PEC + GP + ET + DFT' approach is suggested to be an effective approach to design and comprehensively evaluate molecule-modified materials. |
关键词 | Additives Density functional theory Design for testability Genetic algorithms Hydrogen bonds Lead compounds Machine learning Molecules Perovskite Photoelectrochemical cells Condition Data-driven methods Data-driven optimization Extra-trees Halide perovskites Industrial deployment Machine-learning Photoelectrochemicals Post treatment Solvent treatment |
DOI | 10.1038/s41524-024-01297-4 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Chemistry ; Materials Science |
WOS类目 | Chemistry, Physical ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:001234702700001 |
出版者 | NATURE PORTFOLIO |
EI入藏号 | 20242316212332 |
EI主题词 | Genetic programming |
EI分类号 | 482.2 Minerals ; 702.1 Electric Batteries ; 723.1 Computer Programming ; 723.4 Artificial Intelligence ; 801.4 Physical Chemistry ; 803 Chemical Agents and Basic Industrial Chemicals ; 922.1 Probability Theory ; 931.3 Atomic and Molecular Physics ; 931.4 Quantum Theory ; Quantum Mechanics |
原始文献类型 | Article |
EISSN | 2057-3960 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/36242 |
专题 | 信息工程与人工智能学院 |
通讯作者 | Zhang, Lei |
作者单位 | 1.Lanzhou Univ Finance & Econ, Dept Elect Commerce, Lanzhou, Gansu, Peoples R China; 2.Nanjing Univ Informat Sci & Technol, Sch Chem & Mat Sci, Dept Mat Phys, Nanjing, Peoples R China |
第一作者单位 | 兰州财经大学 |
推荐引用方式 GB/T 7714 | Wang, Shaojun,Huang, Yiru,Hu, Wenguang,et al. Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material[J]. NPJ COMPUTATIONAL MATERIALS,2024,10(1). |
APA | Wang, Shaojun,Huang, Yiru,Hu, Wenguang,&Zhang, Lei.(2024).Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material.NPJ COMPUTATIONAL MATERIALS,10(1). |
MLA | Wang, Shaojun,et al."Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material".NPJ COMPUTATIONAL MATERIALS 10.1(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论