Research on Denoising Methods for Hyperspectral Images Based on Low-Rank Theory and Sparse Representation
Tao, Wanning1; Liu, Na1; Chen, Yiming1; Su, Jin2; Xiao, Hui1; Li, Xuefena3
2023
会议名称2023 International Conference on Sensing, Measurement and Data Analytics in the Era of Artificial Intelligence, ICSMD 2023
会议录名称ICSMD 2023 - International Conference on Sensing, Measurement and Data Analytics in the Era of Artificial Intelligence, Proceedings
会议日期November 2, 2023 - November 4, 2023
会议地点Xi'an, China
出版者Institute of Electrical and Electronics Engineers Inc.
摘要This study addresses the issue of noise interference in hyperspectral images (HSI). By combining singular value decomposition (SVD) with an adaptive block algorithm, an improved algorithm for estimating noise intensity is proposed, aiming for precise assessment of noise levels. Additionally, an enhanced denoising method for hyperspectral images is introduced by integrating low-rank theory and sparse representation algorithms. The research results indicate that, for the Indian Pines public dataset, the denoising performance of the study surpasses existing algorithms by over 3.0 dB. Furthermore, robustness in estimating noise intensity is observed. Valuable insights for denoising similarly structured data with low signal-to-noise ratios are provided by this research, contributing meaningfully to the field. © 2023 IEEE.
关键词Image denoising Image enhancement Signal to noise ratio De-noising Denoising methods HyperSpectral Hyperspectral image Image-based Low-rank Noise estimation Noise intensities Sparse representation Theory representations
DOI10.1109/ICSMD60522.2023.10490870
收录类别EI
语种英语
EI入藏号20241816008363
EI主题词Singular value decomposition
EI分类号716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 921 Mathematics
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/36176
专题会计学院
通讯作者Liu, Na
作者单位1.Tongji University, College of Electronic and Information Engineering, Shanghai, China;
2.Lanzhou University of Finance and Economics, College of Information Engineering, Lanzhou, China;
3.Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, College of Electronic and Information Engineering, Shanghai, China
推荐引用方式
GB/T 7714
Tao, Wanning,Liu, Na,Chen, Yiming,et al. Research on Denoising Methods for Hyperspectral Images Based on Low-Rank Theory and Sparse Representation[C]:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tao, Wanning]的文章
[Liu, Na]的文章
[Chen, Yiming]的文章
百度学术
百度学术中相似的文章
[Tao, Wanning]的文章
[Liu, Na]的文章
[Chen, Yiming]的文章
必应学术
必应学术中相似的文章
[Tao, Wanning]的文章
[Liu, Na]的文章
[Chen, Yiming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。