Community detection in attributed networks using neighborhood information
Wang, Xiaozong1; Tang, Fengqin1; Wang, Yuanyuan2; Li, Cuixia3; Zhao, Xuejing4
2024-04-10
在线发表日期2024-04
发表期刊CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS
卷号27期号:6页码:8349-8366
摘要Community detection is a crucial aspect in network analysis. Real-world networks are often enriched with attributes providing extensive information for nodes beyond mere topology. Integrating these nodal attributes into community detection for attributed networks poses notable challenges and remains an active research field. In this paper, we propose a novel method that incorporates structural information into fused attributes. This is achieved by defining a fusion similarity between nodes, which is a convex combination of topology similarity, pairwise attribute similarity, and attribute similarity with their immediate neighbors. One advantage of the proposed method is its flexibility in identifying communities in disassortative networks, where nodes exhibit more connections between different groups than within their own group. We employ an iterative spectral clustering technique to discover communities and assess the influence of various attributes within these communities. Our experimental results validate the effectiveness of this approach, demonstrating its utility in leveraging node attributes in diverse simulated and real-world network datasets.
关键词Community detection Disassortative stochastic block model Spectral clustering Fusion attribute similarity
DOI10.1007/s10586-024-04457-9
收录类别SCIE ; EI
ISSN1386-7857
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:001200416000003
出版者SPRINGER
EI入藏号20241515903218
EI主题词Topology
EI分类号723.2 Data Processing and Image Processing ; 731.1 Control Systems ; 903.1 Information Sources and Analysis ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory ; 921.6 Numerical Methods ; 922.1 Probability Theory ; 961 Systems Science ; 971 Social Sciences
原始文献类型Article ; Early Access
EISSN1573-7543
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/36168
专题兰州财经大学
通讯作者Tang, Fengqin
作者单位1.Huaibei Normal Univ, Sch Math & Stat, Huaibei, Peoples R China;
2.Lanzhou Univ Finance & Econ, Sch Stat, Lanzhou, Peoples R China;
3.Xuzhou Univ Technol, Sch Math & Stat, Xuzhou, Peoples R China;
4.Lanzhou Univ, Sch Math & Stat, Lanzhou, Peoples R China
推荐引用方式
GB/T 7714
Wang, Xiaozong,Tang, Fengqin,Wang, Yuanyuan,et al. Community detection in attributed networks using neighborhood information[J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS,2024,27(6):8349-8366.
APA Wang, Xiaozong,Tang, Fengqin,Wang, Yuanyuan,Li, Cuixia,&Zhao, Xuejing.(2024).Community detection in attributed networks using neighborhood information.CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS,27(6),8349-8366.
MLA Wang, Xiaozong,et al."Community detection in attributed networks using neighborhood information".CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 27.6(2024):8349-8366.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Xiaozong]的文章
[Tang, Fengqin]的文章
[Wang, Yuanyuan]的文章
百度学术
百度学术中相似的文章
[Wang, Xiaozong]的文章
[Tang, Fengqin]的文章
[Wang, Yuanyuan]的文章
必应学术
必应学术中相似的文章
[Wang, Xiaozong]的文章
[Tang, Fengqin]的文章
[Wang, Yuanyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。