CasANGCL: pre -training and fine-tuning model based on cascaded attention network and graph contrastive learning for molecular property prediction
Zheng, Zixi1; Tan, Yanyan1; Wang, Hong2; Yu, Shengpeng1; Liu, Tianyu3; Liang, Cheng1
2023
发表期刊BRIEFINGS IN BIOINFORMATICS
卷号24期号:1
摘要Motivation: Molecular property prediction is a significant requirement in AI -driven drug design and discovery, aiming to predict the molecular property information (e.g. toxicity) based on the mined biomolecular knowledge. Although graph neural networks have been proven powerful in predicting molecular property, unbalanced labeled data and poor generalization capability for new -synthesized molecules are always key issues that hinder further improvement of molecular encoding performance. Results: We propose a novel self-supervised representation learning scheme based on a Cascaded Attention Network and Graph Contrastive Learning (CasANGCL). We design a new graph network variant, designated as cascaded attention network, to encode local-global molecular representations. We construct a two -stage contrast predictor framework to tackle the label imbalance problem of training molecular samples, which is an integrated end -to -end learning scheme. Moreover, we utilize the information -flow scheme for training our network, which explicitly captures the edge information in the node/graph representations and obtains more fine-grained knowledge. Our model achieves an 81.9% ROC-AUC average performance on 661 tasks from seven challenging benchmarks, showing better portability and generalizations. Further visualization studies indicate our model's better representation capacity and provide interpretability.
关键词molecular representation cascaded attention network graph contrastive learning self-supervised learning molecular property prediction
DOI10.1093/bib/bbac566
收录类别SCIE
ISSN1467-5463
语种英语
WOS研究方向Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS类目Biochemical Research Methods ; Mathematical & Computational Biology
WOS记录号WOS:000905625700001
出版者OXFORD UNIV PRESS
原始文献类型Article
EISSN1477-4054
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/35775
专题工商管理学院
国际经济与贸易学院
通讯作者Wang, Hong
作者单位1.Shangdong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China;
2.Chinese Acad Sci, Computing Inst, Beijing, Peoples R China;
3.Lanzhou Univ Finance & Econ, Dept Elect Engn, Lanzhou, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Zixi,Tan, Yanyan,Wang, Hong,et al. CasANGCL: pre -training and fine-tuning model based on cascaded attention network and graph contrastive learning for molecular property prediction[J]. BRIEFINGS IN BIOINFORMATICS,2023,24(1).
APA Zheng, Zixi,Tan, Yanyan,Wang, Hong,Yu, Shengpeng,Liu, Tianyu,&Liang, Cheng.(2023).CasANGCL: pre -training and fine-tuning model based on cascaded attention network and graph contrastive learning for molecular property prediction.BRIEFINGS IN BIOINFORMATICS,24(1).
MLA Zheng, Zixi,et al."CasANGCL: pre -training and fine-tuning model based on cascaded attention network and graph contrastive learning for molecular property prediction".BRIEFINGS IN BIOINFORMATICS 24.1(2023).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zheng, Zixi]的文章
[Tan, Yanyan]的文章
[Wang, Hong]的文章
百度学术
百度学术中相似的文章
[Zheng, Zixi]的文章
[Tan, Yanyan]的文章
[Wang, Hong]的文章
必应学术
必应学术中相似的文章
[Zheng, Zixi]的文章
[Tan, Yanyan]的文章
[Wang, Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。