Fast anchor graph preserving projections
Wang, Jikui1,2; Wu, Yiwen1; Li, Bing3; Yang, Zhenguo1; Nie, Feiping4
2024-02
在线发表日期2023-09
发表期刊Pattern Recognition
卷号146
摘要The existing graph-based dimensionality reduction algorithms need to learn an adjacency matrix or construct it in advance, therefore the time complexity of the graph-based dimensionality reduction algorithms is not less than O(n2d), where n denotes the number of samples, d denotes the number of dimensions. Moreover, the existing dimensionality reduction algorithms do not consider the cluster information in the original space, resulting in the weakening or even loss of valuable information after dimensionality reduction. To address the above problems, we propose Fast Anchor Graph Preserving Projections (FAGPP), which learns the projection matrix, the anchors and the membership matrix at the same time. Especially, FAGPP has a built-in Principal Component Analysis (PCA) item, which makes our model not only deal with the cluster information of data, but also deal with the global information of data. The time complexity of FAGPP is O(nmd), where m denotes the number of the anchors and m is much less than n. We propose a novel iterative algorithm to solve the proposed model and the convergence of the algorithm is proved theoretically. The experimental results on a large number of high-dimensional benchmark image data sets demonstrate the efficiency of FAGPP. The data sets and the source code are available from https://github.com/511lab/FAGPP. © 2023 Elsevier Ltd
关键词Anchors Clustering algorithms Graphic methods Machine learning Matrix algebra Principal component analysis Reduction Adjacency matrix Anchor graph Dimensionality reduction Dimensionality reduction algorithms Graph-based Learn+ Number of samples Principal-component analysis Projection matrix Time complexity
DOI10.1016/j.patcog.2023.109996
收录类别EI ; SCIE
ISSN0031-3203
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001159087500001
出版者Elsevier Ltd
EI入藏号20234014831158
EI主题词Iterative methods
EI分类号671.2 Ship Equipment ; 723.4 Artificial Intelligence ; 802.2 Chemical Reactions ; 903.1 Information Sources and Analysis ; 921.1 Algebra ; 921.6 Numerical Methods ; 922.2 Mathematical Statistics
原始文献类型Journal article (JA)
EISSN1873-5142
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/35352
专题信息工程与人工智能学院
通讯作者Wang, Jikui
作者单位1.School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Gansu, Lanzhou; 730000, China;
2.State Key Laboratory of Public Big Data, Guizhou University, Guizhou, Guiyang; 550025, China;
3.School of Management, Xiamen University, Xiamen; 361005, China;
4.School of Artificial Intelligence, Optics and ElectroNics(iOPEN), Northwestern Polytechnical University, Shaanxi, Xi'an; 710072, China
第一作者单位兰州财经大学
通讯作者单位兰州财经大学
推荐引用方式
GB/T 7714
Wang, Jikui,Wu, Yiwen,Li, Bing,et al. Fast anchor graph preserving projections[J]. Pattern Recognition,2024,146.
APA Wang, Jikui,Wu, Yiwen,Li, Bing,Yang, Zhenguo,&Nie, Feiping.(2024).Fast anchor graph preserving projections.Pattern Recognition,146.
MLA Wang, Jikui,et al."Fast anchor graph preserving projections".Pattern Recognition 146(2024).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Jikui]的文章
[Wu, Yiwen]的文章
[Li, Bing]的文章
百度学术
百度学术中相似的文章
[Wang, Jikui]的文章
[Wu, Yiwen]的文章
[Li, Bing]的文章
必应学术
必应学术中相似的文章
[Wang, Jikui]的文章
[Wu, Yiwen]的文章
[Li, Bing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。