Institutional Repository of School of Information Engineering and Artificial Intelligence
Fast anchor graph preserving projections | |
Wang, Jikui1,2; Wu, Yiwen1; Li, Bing3; Yang, Zhenguo1; Nie, Feiping4 | |
2024-02 | |
在线发表日期 | 2023-09 |
发表期刊 | Pattern Recognition |
卷号 | 146 |
摘要 | The existing graph-based dimensionality reduction algorithms need to learn an adjacency matrix or construct it in advance, therefore the time complexity of the graph-based dimensionality reduction algorithms is not less than O(n2d), where n denotes the number of samples, d denotes the number of dimensions. Moreover, the existing dimensionality reduction algorithms do not consider the cluster information in the original space, resulting in the weakening or even loss of valuable information after dimensionality reduction. To address the above problems, we propose Fast Anchor Graph Preserving Projections (FAGPP), which learns the projection matrix, the anchors and the membership matrix at the same time. Especially, FAGPP has a built-in Principal Component Analysis (PCA) item, which makes our model not only deal with the cluster information of data, but also deal with the global information of data. The time complexity of FAGPP is O(nmd), where m denotes the number of the anchors and m is much less than n. We propose a novel iterative algorithm to solve the proposed model and the convergence of the algorithm is proved theoretically. The experimental results on a large number of high-dimensional benchmark image data sets demonstrate the efficiency of FAGPP. The data sets and the source code are available from https://github.com/511lab/FAGPP. © 2023 Elsevier Ltd |
关键词 | Anchors Clustering algorithms Graphic methods Machine learning Matrix algebra Principal component analysis Reduction Adjacency matrix Anchor graph Dimensionality reduction Dimensionality reduction algorithms Graph-based Learn+ Number of samples Principal-component analysis Projection matrix Time complexity |
DOI | 10.1016/j.patcog.2023.109996 |
收录类别 | EI ; SCIE |
ISSN | 0031-3203 |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001159087500001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20234014831158 |
EI主题词 | Iterative methods |
EI分类号 | 671.2 Ship Equipment ; 723.4 Artificial Intelligence ; 802.2 Chemical Reactions ; 903.1 Information Sources and Analysis ; 921.1 Algebra ; 921.6 Numerical Methods ; 922.2 Mathematical Statistics |
原始文献类型 | Journal article (JA) |
EISSN | 1873-5142 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/35352 |
专题 | 信息工程与人工智能学院 |
通讯作者 | Wang, Jikui |
作者单位 | 1.School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Gansu, Lanzhou; 730000, China; 2.State Key Laboratory of Public Big Data, Guizhou University, Guizhou, Guiyang; 550025, China; 3.School of Management, Xiamen University, Xiamen; 361005, China; 4.School of Artificial Intelligence, Optics and ElectroNics(iOPEN), Northwestern Polytechnical University, Shaanxi, Xi'an; 710072, China |
第一作者单位 | 兰州财经大学 |
通讯作者单位 | 兰州财经大学 |
推荐引用方式 GB/T 7714 | Wang, Jikui,Wu, Yiwen,Li, Bing,et al. Fast anchor graph preserving projections[J]. Pattern Recognition,2024,146. |
APA | Wang, Jikui,Wu, Yiwen,Li, Bing,Yang, Zhenguo,&Nie, Feiping.(2024).Fast anchor graph preserving projections.Pattern Recognition,146. |
MLA | Wang, Jikui,et al."Fast anchor graph preserving projections".Pattern Recognition 146(2024). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Jikui]的文章 |
[Wu, Yiwen]的文章 |
[Li, Bing]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Jikui]的文章 |
[Wu, Yiwen]的文章 |
[Li, Bing]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Jikui]的文章 |
[Wu, Yiwen]的文章 |
[Li, Bing]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论