A spect-level Slentiment Analysis based on BERT Fusion Multi-module
Wang, WenRui1; Li, Qiang1,2; Huang, JianMin1; Wang, XueRong1; Zhao, Jin Yu1; Li, CongCong1
2021
会议名称3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI)
会议录名称IEEE
页码254-259
会议日期DEC 03-05, 2021
会议地点ELECTR NETWORK
出版地NEW YORK
摘要Aspect-level sentiment analysis is a fine-grained sentiment analysis task. Its task is to calculate people's opinions, evaluations, attitudes and emotions expressed by entities. In recent years, many deep language models have made great progress in this regard, including BERT. The initial layer to the middle layer of BERT can extract grammatical information, but the semantic information of higher layers is often easily ignored. Because extracting sentence sentiment is based on semantics, this article adds two modules of parallel aggregation and hierarchical aggregation on the basis of BERT. Parallel aggregation is used for aspect extraction, and hierarchical aggregation is used for aspect sentiment classification tasks, and the conditional random field is used as Sequence marking tasks to extract more semantic information. From the experimental results on the SemEval 2014 and SemEval 2016 data sets, it can be seen that the accuracy and F1 value of the model proposed in this paper are better than the comparison model, confirming the effectiveness of the model.
关键词BERT sequencelabeling sentiment analysis fine-tuning
收录类别CPCI-S
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000804043100048
原始文献类型Proceedings Paper
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/34572
专题信息工程与人工智能学院
作者单位1.Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou, Gansu, Peoples R China;
2.Lanzhou Univ Finance & Econ, Key Lab Elect Commerce, Lanzhou, Gansu, Peoples R China
推荐引用方式
GB/T 7714
Wang, WenRui,Li, Qiang,Huang, JianMin,et al. A spect-level Slentiment Analysis based on BERT Fusion Multi-module[C]. NEW YORK,2021:254-259.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, WenRui]的文章
[Li, Qiang]的文章
[Huang, JianMin]的文章
百度学术
百度学术中相似的文章
[Wang, WenRui]的文章
[Li, Qiang]的文章
[Huang, JianMin]的文章
必应学术
必应学术中相似的文章
[Wang, WenRui]的文章
[Li, Qiang]的文章
[Huang, JianMin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。