Matching anti-forcing polynomials of catacondensed hexagonal systems
Zhao, Shuang1,2
2023-10-15
发表期刊DISCRETE APPLIED MATHEMATICS
卷号337页码:54-67
摘要Lei, Yeh and Zhang put forward the anti-forcing number af (G, M) for a perfect matching M in a graph G, which is the minimum number of edges of G not in M whose deletion results in a subgraph with a unique perfect matching M. The anti-forcing numbers of all perfect matchings form the anti-forcing spectrum of G. The anti-forcing polynomial Af (G, x) of G is a counting polynomial for classifying perfect matchings possessing the same anti-forcing number in G. In this paper, we deduce recurrence formula of the anti-forcing polynomial and continuity of the anti-forcing spectrum for catacondensed hexagonal systems.(c) 2023 Elsevier B.V. All rights reserved.
关键词Catacondensed hexagonal system Anti-forcing number Anti-forcing polynomial Perfect matching
DOI10.1016/j.dam.2023.04.017
收录类别SCIE ; EI
ISSN0166-218X
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:001000967000001
出版者ELSEVIER
EI入藏号20232514277539
EI主题词Polynomials
EI分类号921.1 Algebra
原始文献类型Article
EISSN1872-6771
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/34489
专题信息工程与人工智能学院
作者单位1.Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou 730000, Gansu, Peoples R China;
2.Key Lab Ebusiness Technol & Applicat Gansu Prov, Lanzhou 730000, Gansu, Peoples R China
第一作者单位兰州财经大学
推荐引用方式
GB/T 7714
Zhao, Shuang. Matching anti-forcing polynomials of catacondensed hexagonal systems[J]. DISCRETE APPLIED MATHEMATICS,2023,337:54-67.
APA Zhao, Shuang.(2023).Matching anti-forcing polynomials of catacondensed hexagonal systems.DISCRETE APPLIED MATHEMATICS,337,54-67.
MLA Zhao, Shuang."Matching anti-forcing polynomials of catacondensed hexagonal systems".DISCRETE APPLIED MATHEMATICS 337(2023):54-67.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhao, Shuang]的文章
百度学术
百度学术中相似的文章
[Zhao, Shuang]的文章
必应学术
必应学术中相似的文章
[Zhao, Shuang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。