Institutional Repository of School of Statistics
作者 | 雷馨钰 |
姓名汉语拼音 | LeiXinyu |
学号 | 2020000003009 |
培养单位 | 兰州财经大学 |
电话 | 18710401336 |
电子邮件 | 1352171621@qq.com |
入学年份 | 2020-9 |
学位类别 | 学术硕士 |
培养级别 | 硕士研究生 |
学科门类 | 理学 |
一级学科名称 | 统计学 |
学科方向 | 数理统计学 |
学科代码 | 0714Z3 |
第一导师姓名 | 郭精军 |
第一导师姓名汉语拼音 | GuoJingjun |
第一导师单位 | 兰州财经大学 |
第一导师职称 | 教授 |
题名 | 部分线性可加Cox模型的变量选择研究 |
英文题名 | Research on Variable Selection of Partially Linear Additive Cox Model |
关键词 | 比例风险模型 B-样条 双层变量选择方法 生存分析 |
外文关键词 | Proportional risk model; ; B-Spline; ; Bi-level variable Selection method; ; Survival analysis |
摘要 | Cox比例风险模型在生存分析中扮演着重要的角色,它能够利用风险函数研究变量与生存函数间的关系,初步处理存在删失情况的生存数据,但实际生活中的数据通常不满足Cox比例风险假定。针对这类数据,引入部分线性可加Cox模型,实现对时依协变量的变量选择研究。本文主要研究内容分为以下三部分:
研究表明双层变量选择方法在部分加性Cox模型中的预测误差优于组变量选择方法,引入的两个数据集都体现了双层变量选择方法的有效性。 |
英文摘要 | Cox proportional risk model plays an important role in survival analysis. It can use risk functions to study the relationship between variables and survival functions, and initially process survival data with censoring. However, data in real life often do not meet the Cox proportional risk assumption. For this type of data, a partially linear additive Cox model is introduced to achieve variable selection research for time-dependent covariates. The main research content of this article is divided into the following three parts: (1)By fitting the nonparametric part of a partially linear additive Cox model with a B-spline curve, the problem of selecting unknown component functions in the model is transformed into the problem of dealing with the selection of system arrays in linear combinations, and spline fitting of partially linear additive Cox models is realized. (2)Bi-level variable selection method is introduced for censored survival data in partially linear additive Cox models, where covariates are naturally grouped. Compared with group variable selection, group selection and individual variable selection can be performed simultaneously within the selected group, improving model estimation accuracy. (3)By comparing the performance of the group variable selection method and the two-level variable selection method under five indicators through simulation analysis, the effectiveness of the two-level variable selection method in a partially linear additive Cox model was verified. Two different types of cancer data sets were introduced, and the results showed that the variables screened by the two-level variable selection method had the highest correlation with survival time, which was of practical significance in tackling cancer diseases. Study has shown that the prediction error of the two-level variable selection method in the partially additive Cox model is better than that of the group variable selection method. The two data sets introduced reflect the effectiveness of the two-level variable selection method. |
学位类型 | 硕士 |
答辩日期 | 2023-05-20 |
学位授予地点 | 甘肃省兰州市 |
语种 | 中文 |
论文总页数 | 88 |
参考文献总数 | 45 |
馆藏号 | 0004817 |
保密级别 | 公开 |
中图分类号 | 0212/27 |
文献类型 | 学位论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/34389 |
专题 | 统计与数据科学学院 |
推荐引用方式 GB/T 7714 | 雷馨钰. 部分线性可加Cox模型的变量选择研究[D]. 甘肃省兰州市. 兰州财经大学,2023. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
部分线性可加Cox模型的变量选择研究.p(3419KB) | 学位论文 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[雷馨钰]的文章 |
百度学术 |
百度学术中相似的文章 |
[雷馨钰]的文章 |
必应学术 |
必应学术中相似的文章 |
[雷馨钰]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论