作者雷馨钰
姓名汉语拼音LeiXinyu
学号2020000003009
培养单位兰州财经大学
电话18710401336
电子邮件1352171621@qq.com
入学年份2020-9
学位类别学术硕士
培养级别硕士研究生
学科门类理学
一级学科名称统计学
学科方向数理统计学
学科代码0714Z3
第一导师姓名郭精军
第一导师姓名汉语拼音GuoJingjun
第一导师单位兰州财经大学
第一导师职称教授
题名部分线性可加Cox模型的变量选择研究
英文题名Research on Variable Selection of Partially Linear Additive Cox Model
关键词比例风险模型 B-样条 双层变量选择方法 生存分析
外文关键词Proportional risk model; ; B-Spline; ; Bi-level variable Selection method; ; Survival analysis
摘要

Cox比例风险模型在生存分析中扮演着重要的角色,能够利用风险函数研究变量与生存函数间的关系,初步处理存在删失情况的生存数据但实际生活中的数据通常不满足Cox比例风险假定。针对这类数据,引入部分线性可加Cox模型,实现对时依变量的变量选择研究本文主要研究内容分为以下三部分:

  1. 通过B-样条曲线拟合部分线性可加Cox模型非参数部分,将模型中未知分量函数选择问题转变为处理线性组合中选择系数组的问题,实现对部分线性可加Cox模型的样条拟合
  2. 针对部分线性可加Cox模型中的删失生存数据引入双层变量选择方法,其中协变量自然分组。与组变量选择相比,实现在选定的组内同时进行组选择和个体变量选择,提高模型估计精度。
  3. 通过模拟分析对比组变量选择方法和双层变量选择方法在五类指标下的性能,验证了双层变量选择方法在部分线性可加Cox模型中的有效性。分别引入两不同的癌症数据集,结果表明双层变量选择方法筛选出的变量与存活时间相关度最高,对攻克癌症疾病有现实意义。

研究表明双层变量选择方法在部分加性Cox模型中的预测误差优于组变量选择方法,引入的两个数据集都体现了双层变量选择方法的有效性。

英文摘要

Cox proportional risk model plays an important role in survival analysis. It can use risk functions to study the relationship between variables and survival functions, and initially process survival data with censoring. However, data in real life often do not meet the Cox proportional risk assumption. For this type of data, a partially linear additive Cox model is introduced to achieve variable selection research for time-dependent covariates. The main research content of this article is divided into the following three parts:

(1)By fitting the nonparametric part of a partially linear additive Cox model with a B-spline curve, the problem of selecting unknown component functions in the model is transformed into the problem of dealing with the selection of system arrays in linear combinations, and spline fitting of partially linear additive Cox models is realized.

(2)Bi-level variable selection method is introduced for censored survival data in partially linear additive Cox models, where covariates are naturally grouped. Compared with group variable selection, group selection and individual variable selection can be performed simultaneously within the selected group, improving model estimation accuracy.

(3)By comparing the performance of the group variable selection method and the two-level variable selection method under five indicators through simulation analysis, the effectiveness of the two-level variable selection method in a partially linear additive Cox model was verified. Two different types of cancer data sets were introduced, and the results showed that the variables screened by the two-level variable selection method had the highest correlation with survival time, which was of practical significance in tackling cancer diseases.

Study has shown that the prediction error of the two-level variable selection method in the partially additive Cox model is better than that of the group variable selection method. The two data sets introduced reflect the effectiveness of the two-level variable selection method.

学位类型硕士
答辩日期2023-05-20
学位授予地点甘肃省兰州市
语种中文
论文总页数88
参考文献总数45
馆藏号0004817
保密级别公开
中图分类号0212/27
文献类型学位论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/34389
专题统计与数据科学学院
推荐引用方式
GB/T 7714
雷馨钰. 部分线性可加Cox模型的变量选择研究[D]. 甘肃省兰州市. 兰州财经大学,2023.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
部分线性可加Cox模型的变量选择研究.p(3419KB)学位论文 开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[雷馨钰]的文章
百度学术
百度学术中相似的文章
[雷馨钰]的文章
必应学术
必应学术中相似的文章
[雷馨钰]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 部分线性可加Cox模型的变量选择研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。