作者杨颖
姓名汉语拼音Yang Ying
学号2020000010014
培养单位兰州财经大学
电话15871709361
电子邮件2767598183@qq.com
入学年份2020-9
学位类别学术硕士
培养级别硕士研究生
学科门类管理学
一级学科名称管理科学与工程
学科方向
学科代码1201
第一导师姓名韩金仓
第一导师姓名汉语拼音Han Jincang
第一导师单位兰州财经大学
第一导师职称教授
题名基于深度学习非小细胞肺癌患者生存风险分层和 TMM 分期预测研究
英文题名Survival Risk Stratification and TNM stage prediction in NSCLC patients with Pretreatment PET/CT using Deep Learning-Radiomics
关键词非小细胞肺癌 深度学习 风险分层 TNM 分期 影像组学
外文关键词NSCLC ; Deep learning ; Risk stratification ; TNM staging ; Radiomics
摘要
  非小细胞肺癌(NSCLC)是肺癌相关死亡的主要原因。NSCLC 患者的生存风险分层能帮助医生制定个体化治疗方案、规划随访计划和延长病人的生存期,人工智能可以从大量医疗信息中识别关键的信息,帮助患者预后。目前,肿瘤淋巴转移(TNM)分期是生存风险分层的主要手段,也是医生判断患者生存风险的重 要指标,然而 TNM 分期需要进行病理检测,这有可能给患者带来感染的风险。为 了解决这一问题,本文通过正电子发射断层显像/X 线计算机断层成像(PET/CT)图像获取 NSCLC 病人的 TNM 分期和将 NSCLC 病人生存风险分层,减少患者病理检 测的痛苦,帮助医生有效决策。主要研究内容如下:
  (1)为了将 NSCLC 患者生存风险准确分层,通过治疗前的 PET/CT 图像,对 467 例 NSCLC 患者建立深度学习模型,并根据其预测结果对患者生存风险分层。 首先,对原始 PET/CT 图像进行预处理,得到患者正面和侧面的全身最大密度投影(MIP)图像。其次,基于 MIP 图像、影像组学数据和临床信息,深度学习模型中,设计了多模态信息的融合模块。然后,训练深度学习模型以获得生存风险分层。最后,利用接收者操作特征曲线下的面积(AUC)和准确率对模型性能进 行评价。在预测患者生存风险时,模型的 AUC 为 0.84,准确率为 0.78,高于临床信息作为输入的随机森林模型(准确率:0.78,AUC:0.78)和传统的影像组学模型(准确率:0.71,AUC:0.78)。本文的模型对 NSCLC 患者更有效地进行生存风险分层,为患者提供早期预后信息。
  (2)为了获取 NSCLC 患者的 TNM 分期和生存风险分层,本文提出了端到端的多任务深度学习模型,在深度学习模型框架中,可以预测 TNM 分期和生存风险分层高低。多任务深度学习模型将 TNM 分期做为辅助任务,NSCLC 患者生存风险分层作为主要任务,两个任务的在训练过程中相互促进。首先,使用 Swim Transformer 提取正面和侧面 MIP 图像的深度学习特征,并与影像组学特征融合。然后,使用融合后的特征同时预测 NSCLC 患者的 TNM 分期和生存风险分层。实验结果表明,本文所提出多任务深度学习模型优于传统的基于影像组学的随机森林模型模型和单任务的深度学习模型。
英文摘要

Non-small cell lung cancer (NSCLC) is the leading cause of lung cancer-related death. Survival risk stratification of NSCLC patients can help doctors develop individualized treatment plans, plan follow-up plans and prolong patients' survival. Artificial intelligence can identify key information from a large amount of medical information to help patients' prognosis. Tumor, node, and metastasisTNM staging is the main means of survival risk stratification, and also an important indicator for doctors to judge patients' survival risk. However, TNM staging requires pathological detection, which may bring the risk of infection to patients. To solve this problem, in this paper, positron emission tomography/computed tomography (PET/CT) images were used to obtain TNM staging of NSCLC patients and stratify survival risk of NSCLC patients, so as to reduce the pain of patients' pathological testing and help doctors make effective decisions. The main research is as follows:

(1) In order to accurately stratify the survival risk of patients with NSCLC, a deep learning model was established for 467 patients with NSCLC through PET/CT images before treatment, and the patients were stratified according to the survival prediction results. First, the original PET/CT images were processed by preprocessing technology to obtain the full-body maximum density projection (MIP) images of the patient in front and side. Secondly, based on MIP image, radiomics data and clinical information, a multi-modal information fusion module is designed in the deep learning model. The deep learning model was then trained to obtain survival risk stratification. Finally, the area under receiver operation characteristic curve (AUC) and accuracy were used to evaluate the model performance. In predicting patients' survival risk, the model had an AUC of 0.84 and an accuracy of 0.78, higher than that of the random forest model with clinical information input (accuracy: 0.78, AUC: 0.78) and the traditional radiomics model (accuracy: 0.71, AUC: 0.78). The model presented in this paper can effectively stratify the survival risk of NSCLC patients and provide early prognostic information for patients.

(2) In order to obtain TNM staging and survival risk stratification of NSCLC patients, this paper proposes an end-to-end multi-task deep learning model. In the deep learning model framework of this paper, the level of TNM staging and survival risk stratification can be predicted. The multi-task deep learning model takes TNM staging as the auxiliary task and survival risk stratification of NSCLC patients as the main task. The two tasks promote each other in the training process. First, the deep learning features of the front and side MIP images were extracted using Swin Transformer and fused with the radiomics features. Post-fusion features were then used to simultaneously predict TNM stage and survival risk stratification in patients with NSCLC. The experimental results show that the multi-task deep learning model proposed in this paper is superior to the traditional stochastic forest model based on radiomics and the single-task deep learning model.

学位类型硕士
答辩日期2023-05-20
学位授予地点甘肃省兰州市
语种中文
论文总页数52
参考文献总数49
馆藏号0004976
保密级别内部
中图分类号C93/85
文献类型学位论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/34379
专题信息工程与人工智能学院
推荐引用方式
GB/T 7714
杨颖. 基于深度学习非小细胞肺癌患者生存风险分层和 TMM 分期预测研究[D]. 甘肃省兰州市. 兰州财经大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
杨颖毕业论文20230807.pdf(1217KB)学位论文 暂不开放CC BY-NC-SA请求全文
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[杨颖]的文章
百度学术
百度学术中相似的文章
[杨颖]的文章
必应学术
必应学术中相似的文章
[杨颖]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。