作者秦精俏
姓名汉语拼音qinjingqiao
学号2020000010009
培养单位兰州财经大学
电话18963091397
电子邮件qinjingqiaoyan@163.com
入学年份2020-9
学位类别学术硕士
培养级别硕士研究生
学科门类管理学
一级学科名称管理科学与工程
学科方向
学科代码1201
授予学位管理学硕士
第一导师姓名王玉珍
第一导师姓名汉语拼音wangyuzhen
第一导师单位兰州财经大学
第一导师职称教授
题名基于深度学习的多通道餐饮评论细粒度情感分析
英文题名Fine-grained emotional analysis of multi-channel restaurant reviews based on in-depth learning
关键词深度学习 细粒度情感分析 局部特征提取 多通道情感分析模型
外文关键词Deep learning; ; Fine grained emotional analysis ; Local feature extraction ; Multi channel emotional analysis model
摘要

情感分析作为自然语言处理的重要内容,在电子商务快速发展的今天有着广泛应用。然而,传统情感分析利用情感词典的方法,给予整条综合性评论单一情感极性,忽略了对多个不同角度情感的细化分析。因此,为进一步准确高效地分析综合性评论不同方面的情感,本文基于深度学习方法,构建了多通道餐饮评论细粒度情感分析模型,从优化细粒度情感分析模型和特征提取准确率两个角度展开研究。其中,情感分析模型的研究是粒度化餐饮评论情感极性,采用多通道方式提高各粒度情感分析的准确率,进而有针对性的挖掘综合性评论中的潜在价值;优化特征提取的研究是改进Bert预训练模型,构建餐饮评论词向量表,引入开源知识图谱,提高对隐式特征的抽取效果。本文主要工作:

1)构建了Bert-BiSRU-Att单通道餐饮评论细粒度情感分析模型。针对多粒度多极性的多维度情感分析问题,本文提出了Bert-BiSRU-Att模型,将Bert预训练模型获得的动态词向量输入到单通道BiSRU-Att中,从而获得丰富的语义信息。为下阶段优化情感分析模型创造基础。

2)构建了Bert-BiSRU-Att-TextCNN多通道餐饮评论细粒度情感分析模型。改变单通道模型输入方式,将词句向量以三通道形式分别输入到BiSRU-AttTextCNN和句向量通道中,保留各通道提取到的特征信息、主题词与情感词之间的语义关系,最后输出13个粒度的情感极性。实验结果表明,本文所提出的多通道模型较其他模型在细粒度情感分析准确率方面有明显提升。

3)构建了KW-Bert-BiSRU-Att-TextCNN多通道餐饮评论细粒度情感分析模型。为进一步提高情感分析的准确率,首先优化了预训练模型,引入带有开源知识图谱的预训练模型K-Bert,标注特殊词汇增加额外特征信息,再基于餐饮评论词向量表,借助kd-tree对词向量进行相似度检验,从而高效识别特殊领域的词汇,丰富下游情感分析模型的语义和语法信息;然后将改进后的预训练模型与多通道情感分析模型共同应用于餐饮评论数据集中,从而进一步提高情感分析的准确率;最后通过对比实验,验证本文提出的KW-Bert-BiSRU-Att-TextCNN模型的有效性。

英文摘要

As an important part of natural language processing, emotion analysis is widely used in today's rapid development of e-commerce. However, traditional sentiment analysis utilizes the method of sentiment dictionaries to provide a single emotional polarity for the entire comprehensive comment, neglecting the detailed analysis of multiple emotions from different perspectives. Therefore, in order to further accurately and efficiently analyze the emotions of different aspects of comprehensive reviews, this article constructs a multi-channel fine-grained sentiment analysis model for restaurant reviews based on deep learning methods, and conducts research from two perspectives: optimizing the fine-grained sentiment analysis model and feature extraction accuracy. Among them, the research on sentiment analysis models focuses on granular emotional polarity in food and beverage reviews, using a multi-channel approach to improve the accuracy of sentiment analysis at each granularity, and then targeted exploration of the potential value in comprehensive reviews; The research on optimizing feature extraction is to improve the Bert pre training model, construct a vector table of restaurant comment words, introduce open-source knowledge graph, and improve the extraction effect of implicit features. The main work of this article is:

(1) A Bert-BiSRU-Att single-channel fine-grained emotional analysis model for restaurant reviews was constructed. In order to solve the problem of multi-dimensional emotion analysis with multi granularity and multi polarity, this paper proposes a Bert-BiSRU-Att model, which inputs the dynamic word vector obtained by Bert pre training model into a single channel BiSRU-Att to obtain rich semantic information. Create a foundation for optimizing the emotional analysis model in the next stage.

(2) A Bert-BiSRU-Att-TextCNN multi-channel fine-grained emotional analysis model for restaurant reviews was constructed. Change the input method of the single channel model, input the phrase and sentence vectors into the BiSRU-Att, TextCNN, and sentence vector channels in three channels, preserve the feature information extracted from each channel, and the semantic relationship between the subject word and the emotional word. Finally, output 13 granularity emotional polarity. The experimental results show that the multi-channel model proposed in this paper significantly improves the accuracy of fine-grained emotional analysis compared to other models.

(3) A KW-Bert-BiSRU-At-TextCNN multi-channel fine-grained emotional analysis model for restaurant reviews was constructed. In order to further improve the accuracy of emotion analysis, the pre training model was first optimized, and the pre training model K-Bert with an open source knowledge map was introduced. Special words were labeled to add additional feature information. Then, based on the food and beverage review word vector table, word vectors were tested for similarity using kd-tree, thereby efficiently identifying words in special areas and enriching the semantic and grammatical information of downstream emotion analysis models; Then, the improved pre training model and multi-channel emotional analysis model are applied to the food and beverage review data set to further improve the accuracy of emotional analysis; Finally, through comparative experiments, the validity of the KW-Bert-BiSRU-At-TextCNN model proposed in this paper is verified.

学位类型硕士
答辩日期2023-05-20
学位授予地点甘肃省兰州市
语种中文
论文总页数77
参考文献总数69
馆藏号0004971
保密级别公开
中图分类号C93/80
文献类型学位论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/34325
专题信息工程与人工智能学院
推荐引用方式
GB/T 7714
秦精俏. 基于深度学习的多通道餐饮评论细粒度情感分析[D]. 甘肃省兰州市. 兰州财经大学,2023.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2020000010009.pdf(3854KB)学位论文 开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[秦精俏]的文章
百度学术
百度学术中相似的文章
[秦精俏]的文章
必应学术
必应学术中相似的文章
[秦精俏]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2020000010009.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。