Fast semi-supervised self-training algorithm based on data editing
Li, Bing1,2; Wang, Jikui2; Yang, Zhengguo2; Yi, Jihai2; Nie, Feiping3,4
2023-05
发表期刊INFORMATION SCIENCES
卷号626页码:293-314
摘要Self-training is a commonly semi-supervised learning Algorithm framework. How to select the high-confidence samples is a crucial step for algorithms based on self-training framework. To alleviate the impact of noise data, researchers have proposed many data editing methods to improve the selection quality of high-confidence samples. However, the state-of-the-art data editing methods have high time complexity, which is not less than O(n(2)), where n denotes the number of samples. To improve the training speed while ensuring the quality of the selected high-confidence samples, inspired by Ball-k-means algorithm, we propose a fast semi-supervised self-training Algorithm based on data editing (EBSA), which defines ball-cluster partition and editing to improve the quality of high-confidence samples. The time complexity of the proposed EBSA is O(t(2kn + n log n + n + k(2))) , where k denotes the number of centers, t denotes the number of iterates. k is far less than n, EBSA has linear time complexity with respect to n. A large number of experiments on 20 benchmark data sets have been carried out and the experimental results show that the proposed Algorithm not only ran faster, but also obtained better classification performance compared with the comparison algorithms. (c) 2023 Elsevier Inc. All rights reserved.
关键词Semi-supervised learning Self-training classification Ball-k-means Data editing
DOI10.1016/j.ins.2023.01.029
收录类别SCIE ; EI
ISSN0020-0255
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000925337600001
出版者ELSEVIER SCIENCE INC
EI入藏号20230413427395
EI主题词Classification (of information)
EI分类号716.1 Information Theory and Signal Processing ; 723.4.2 Machine Learning ; 903.1 Information Sources and Analysis
原始文献类型Article
EISSN1872-6291
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/33449
专题信息工程与人工智能学院
作者单位1.Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Guizhou, Peoples R China;
2.Lanzhou Univ Finance & Econ, Coll Informat Engn, Lanzhou 730020, Gansu, Peoples R China;
3.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shanxi, Peoples R China;
4.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Shanxi, Peoples R China
第一作者单位兰州财经大学
推荐引用方式
GB/T 7714
Li, Bing,Wang, Jikui,Yang, Zhengguo,et al. Fast semi-supervised self-training algorithm based on data editing[J]. INFORMATION SCIENCES,2023,626:293-314.
APA Li, Bing,Wang, Jikui,Yang, Zhengguo,Yi, Jihai,&Nie, Feiping.(2023).Fast semi-supervised self-training algorithm based on data editing.INFORMATION SCIENCES,626,293-314.
MLA Li, Bing,et al."Fast semi-supervised self-training algorithm based on data editing".INFORMATION SCIENCES 626(2023):293-314.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Bing]的文章
[Wang, Jikui]的文章
[Yang, Zhengguo]的文章
百度学术
百度学术中相似的文章
[Li, Bing]的文章
[Wang, Jikui]的文章
[Yang, Zhengguo]的文章
必应学术
必应学术中相似的文章
[Li, Bing]的文章
[Wang, Jikui]的文章
[Yang, Zhengguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。