Aspect-level Sentiment Analysis based on BERT Fusion Multi-module
Wang, WenRui1; Li, Qiang2; Huang, JianMin1; Wang, XueRong1; Zhao, Jin Yu1; Li, CongCong1
2021
会议名称3rd International Conference on Machine Learning, Big Data and Business Intelligence, MLBDBI 2021
会议录名称Proceedings - 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence, MLBDBI 2021
页码254-259
会议日期December 3, 2021 - December 5, 2021
会议地点Virtual, Online, China
出版者Institute of Electrical and Electronics Engineers Inc.
摘要Aspect-level sentiment analysis is a fine-grained sentiment analysis task. Its task is to calculate people's opinions, evaluations, attitudes and emotions expressed by entities. In recent years, many deep language models have made great progress in this regard, including BERT. The initial layer to the middle layer of BERT can extract grammatical information, but the semantic information of higher layers is often easily ignored. Because extracting sentence sentiment is based on semantics, this article adds two modules of parallel aggregation and hierarchical aggregation on the basis of BERT. Parallel aggregation is used for aspect extraction, and hierarchical aggregation is used for aspect sentiment classification tasks, and the conditional random field is used as Sequence marking tasks to extract more semantic information. From the experimental results on the SemEval 2014 and SemEval 2016 data sets, it can be seen that the accuracy and F1 value of the model proposed in this paper are better than the comparison model, confirming the effectiveness of the model. © 2021 IEEE.
关键词Classification (of information) Semantics BERT Fine grained Fine tuning Hierarchical aggregation Language model Middle layer Multimodule Semantics Information Sentiment analysis Sequence Labeling
DOI10.1109/MLBDBI54094.2021.00055
收录类别EI
语种英语
EI入藏号20221611978853
EI主题词Sentiment analysis
EI分类号716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/33416
专题信息工程与人工智能学院
作者单位1.School Of Information Engineering, Lanzhou University Of Finance And Economics, Gansu, Lanzhou, China;
2.Key Laboratory Of Electronic Commerce, Lanzhou University Of Finance And Economics, Gansu, Lanzhou, China
推荐引用方式
GB/T 7714
Wang, WenRui,Li, Qiang,Huang, JianMin,et al. Aspect-level Sentiment Analysis based on BERT Fusion Multi-module[C]:Institute of Electrical and Electronics Engineers Inc.,2021:254-259.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, WenRui]的文章
[Li, Qiang]的文章
[Huang, JianMin]的文章
百度学术
百度学术中相似的文章
[Wang, WenRui]的文章
[Li, Qiang]的文章
[Huang, JianMin]的文章
必应学术
必应学术中相似的文章
[Wang, WenRui]的文章
[Li, Qiang]的文章
[Huang, JianMin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。