Forecasting hourly PM2.5 based on deep temporal convolutional neural network and decomposition method
Jiang, Fuxin1,2; Zhang, Chengyuan3; Sun, Shaolong4; Sun, Jingyun5
2021-12
发表期刊Applied Soft Computing
卷号113
摘要For hourly PM2.5 concentration prediction, accurately capturing the data patterns of external factors that affect PM2.5 concentration changes, and constructing a forecasting model is one of efficient means to improve forecasting accuracy. In this study, a novel hybrid forecasting model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and deep temporal convolutional neural network (DeepTCN) is developed to predict PM2.5 concentration, by modeling the data patterns of historical pollutant concentrations data, meteorological data, and discrete time variables’ data. Taking PM2.5 concentration of Beijing as the sample, experimental results showed that the forecasting accuracy of the proposed CEEMDAN-DeepTCN model is verified to be the highest when compared with the statistics-based models, traditional machine learning models, the popular deep learning models and several existing hybrid models. The new model has improved the capability to model the PM2.5-related factor data patterns, and can be used as a promising tool for forecasting PM2.5 concentrations. © 2021 Elsevier B.V.
关键词Acoustic noise measurement Convolution Learning systems Neural network models Convolutional neural networks Deep neural networks Forecasting Meteorology Spurious signal noise Adaptive noise Complete ensemble empirical mode decomposition with adaptive noise Convolutional neural network Data patterns Deep learning Empirical Mode Decomposition Forecasting models PM 2.5 PM2.5 concentration forecasting Temporal convolutional
DOI10.1016/j.asoc.2021.107988
收录类别EI ; SCIE ; SSCI
ISSN1568-4946
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000765558100001
出版者Elsevier Ltd
EI入藏号20214511118197
EI主题词Empirical mode decomposition
EI分类号461.4 Ergonomics and Human Factors Engineering ; 716.1 Information Theory and Signal Processing ; 723.4 Artificial Intelligence ; 751.4 Acoustic Noise ; 941.2 Acoustic Variables Measurements
原始文献类型Journal article (JA)
EISSN1872-9681
引用统计
被引频次:27[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/33414
专题统计与数据科学学院
作者单位1.Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing; 100190, China;
2.School of Economics and Management, University of Chinese Academy of Sciences, Beijing; 100190, China;
3.School of Economics and Management, Xidian University, Xi'an; 710126, China;
4.School of Management, Xi'an Jiaotong University, Xi'an; 710049, China;
5.School of Statistics, Lanzhou University of Finance and Economics, Lanzhou; 730020, China
第一作者单位经济学院
推荐引用方式
GB/T 7714
Jiang, Fuxin,Zhang, Chengyuan,Sun, Shaolong,et al. Forecasting hourly PM2.5 based on deep temporal convolutional neural network and decomposition method[J]. Applied Soft Computing,2021,113.
APA Jiang, Fuxin,Zhang, Chengyuan,Sun, Shaolong,&Sun, Jingyun.(2021).Forecasting hourly PM2.5 based on deep temporal convolutional neural network and decomposition method.Applied Soft Computing,113.
MLA Jiang, Fuxin,et al."Forecasting hourly PM2.5 based on deep temporal convolutional neural network and decomposition method".Applied Soft Computing 113(2021).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Fuxin]的文章
[Zhang, Chengyuan]的文章
[Sun, Shaolong]的文章
百度学术
百度学术中相似的文章
[Jiang, Fuxin]的文章
[Zhang, Chengyuan]的文章
[Sun, Shaolong]的文章
必应学术
必应学术中相似的文章
[Jiang, Fuxin]的文章
[Zhang, Chengyuan]的文章
[Sun, Shaolong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。