Nonparametric quantile regression with missing data using local estimating equations
Wang, Chunyu1; Tian, Maozai1,2,3,4; Tang, Man-Lai5,6
2022-01-02
发表期刊JOURNAL OF NONPARAMETRIC STATISTICS
卷号34期号:1页码:164-186
摘要In this paper, we propose augmented inverse probability weighted (AIPW) local estimating equations in dealing with missing data in nonparametric quantile regression context. The missing mechanism here is missing at random. To avoid the problem of misspecification, we adopt nonparametric approach to estimate the propensity score and conditional expectations of estimating functions. The asymptotic properties of our proposed estimator are studied. Majorisation-minimisation algorithm is used to circumvent the nonsmoothness of check function at the origin. When it comes to the choice of bandwidth, the theoretical expression of local optimal bandwidth is derived based on asymptotic properties. Moreover, we apply smoothed bootstrap method to obtain the empirical mean square error and use cross-validation to determine the bandwidth in practice. Simulations are conducted to compare the performance of our proposed methods with other existing methods. Finally, we illustrate our methodology with an analysis of non-insulin-dependent diabetes mellitus data set.
关键词Missing data augmented inverse probability weighted method local estimating equations nonparametric quantile regression
DOI10.1080/10485252.2022.2026353
收录类别SCIE
ISSN1048-5252
语种英语
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000748844600001
出版者TAYLOR & FRANCIS LTD
原始文献类型Article
EISSN1029-0311
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/32023
专题统计与数据科学学院
作者单位1.Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing, Peoples R China;
2.Xinjiang Med Univ, Dept Med Engn & Technol, Urumqi, Peoples R China;
3.Lanzhou Univ Finance & Econ, Sch Stat, Lanzhou, Peoples R China;
4.Xinjiang Univ Finance, Sch Stat & Informat, Urumqi, Peoples R China;
5.Brunel Univ London, Coll Engn Design Phys Sci, Dept Math, Uxbridge, Middx, England;
6.Hang Seng Univ Hong Kong, Dept Math Stat & Insurance, Siu Lek Yuen, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Wang, Chunyu,Tian, Maozai,Tang, Man-Lai. Nonparametric quantile regression with missing data using local estimating equations[J]. JOURNAL OF NONPARAMETRIC STATISTICS,2022,34(1):164-186.
APA Wang, Chunyu,Tian, Maozai,&Tang, Man-Lai.(2022).Nonparametric quantile regression with missing data using local estimating equations.JOURNAL OF NONPARAMETRIC STATISTICS,34(1),164-186.
MLA Wang, Chunyu,et al."Nonparametric quantile regression with missing data using local estimating equations".JOURNAL OF NONPARAMETRIC STATISTICS 34.1(2022):164-186.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Chunyu]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
百度学术
百度学术中相似的文章
[Wang, Chunyu]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
必应学术
必应学术中相似的文章
[Wang, Chunyu]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。