作者朱立群
姓名汉语拼音Zhu Liqun
学号2018000003137
培养单位兰州财经大学
电话15218723750
电子邮件cyuzhuliqun@163.com
入学年份2018-9
学位类别专业硕士
培养级别硕士研究生
一级学科名称应用统计
学科代码0252
第一导师姓名梁亚民
第一导师姓名汉语拼音Liang Yamin
第一导师单位兰州财经大学
第一导师职称教授
题名融合模型在小微企业破产判别分析中的应用
英文题名Applications of ensemble model in discrimination analysis of bankcrapcy of Small and Micro-Enterprises
关键词小微企业破产 机器学习 融合模型 数据不平衡-SMOTE 抽样 多维度变换
外文关键词Bankruptcy ; Machine learning ; Ensemble model ; Imbalanced dataset SMOTE resampling ; Multi-scale transformation
摘要
小微企业融资难已成为当今经济发展的一大制约因素,而企业信用评级在小微企业信贷业务方面有着举足轻重的作用。本论文以网上公开数据-波兰企业财务数据为例,研究了企业破产/未破产二分类的决策模型,主要开展了以下工作:应用多尺度变换剔除异常数据,应用 3s准则对个别数据做了收缩替代,以及应用中位数进行了缺失数据插补。依据双样本均值差异的显著性检验、分类数据平均类内距、变量间相关系数等原则挑选出对分类效果有明显效果的、相互间无明显共线性的特征变量集。此变量集既可用来建立企业风险评级模型,又可以进行风险控制。应用基础分类模型 KNN, SVM, Random Forest 和提升模型XGBoost,GBDT以及LightGBM六个单一模型研究数据的破产/未破产二分类问题,发现提升模型能在一定程度上改善决策模型分类性能;在基础模型基础上,研究了基于投票法和Blending方法的融合模型在企业破产预测评价方面的效能,结果表明投票法在提升模型评价性能方面效果有限,基于 XGBoostBlending融合模型对评判性能有很好的提升,相对于基于GBDTLightGBM的融合模型,前者在防范模型过拟合方面也表现优异。研究结果表明,模型融合方法在评判企业破产/未破产的风险评价方面有良好的表现,值得继续深入研究。
英文摘要

  The difficulty of obtaining the financial support for small/micro enterprises has become a major restrictive factor in their development,in which enterprise credit rating plays an important role in the credit business. Considering the online public data——Polish enterprise financial data as an example, this paper studies the discriminant model of bankruptcy/non-bankruptcy:The multi-scale transformation is used to eliminate abnormal data, the well known 3s criterion is used to shrink and replace individual abnormal data, and the median is used to interpolate missing data.According to the significance test of the mean difference between two independent samples, the average within-class distance two sub-samples and the correlation coefficient between variables, the distinguished variable sets which has important effect on the classification and no collinearity each other are selected. This variable set can be used not only to establish enterprise risk evaluation model, but also to control risk.Six single models, including the classical classification model KNN, SVM, Random Forest and the Boosting Decision Tree algorithm such as XGBoost, GBDT and LightGBM, are studied to study the classification of bankruptcy/non-bankruptcy. It is found that the latter lifting algorithm can improve the classification performance of the decision model to a certain extent. Two ensemble strategy——Voting and Blending,based on the aforementioned foundational model, were studied in the prediction and evaluation of bankruptcy. The results show that the voting method has limited promotion in the classification performance of the model.The Blending method based on XGBoost has a distinguished improvement in the evaluation performance. Compared with other ensemble models based on GBDT and LightGBM, The former also performs well in preventing over fitting of the model. The results show that the ensemble model has a good performance in discriminate and evaluation the bankruptcy/non bankruptcy risk, which is worthy of further research.

学位类型硕士
答辩日期2021-12-03
学位授予地点甘肃省兰州市
语种中文
论文总页数57
参考文献总数44
馆藏号0004071
保密级别内部
中图分类号C8/258
文献类型学位论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/30984
专题统计与数据科学学院
推荐引用方式
GB/T 7714
朱立群. 融合模型在小微企业破产判别分析中的应用[D]. 甘肃省兰州市. 兰州财经大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
10741_2018000003137_(2097KB)学位论文 暂不开放CC BY-NC-SA请求全文
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[朱立群]的文章
百度学术
百度学术中相似的文章
[朱立群]的文章
必应学术
必应学术中相似的文章
[朱立群]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。