作者 | 王越 |
姓名汉语拼音 | wang yue |
学号 | 2018000005191 |
培养单位 | 兰州财经大学 |
电话 | 13329312300 |
电子邮件 | 13329312300@163.com |
入学年份 | 2018-9 |
学位类别 | 专业硕士 |
培养级别 | 硕士研究生 |
一级学科名称 | 金融 |
学科代码 | 0251 |
第一导师姓名 | 杨世峰 |
第一导师姓名汉语拼音 | yang shi feng |
第一导师单位 | 兰州财经大学 |
第一导师职称 | 教授 |
题名 | 基于IC分析法和支持向量机算法的量化投资模型研究 |
英文题名 | Research on quantitative investment model based on IC analysis and Support vector machine |
关键词 | 量化投资 IC 分析法 支持向量机算法 |
外文关键词 | Quantitative Investment ; IC Analysis ; Support vector machine |
摘要 | 量化投资是一种新型的投资技术和投资方式,其建立了一套系统性的思维决策实施过程,包含策略交易、风险控制等诸多核心内容,再加上人工智能技术的融入,更是推进了量化投资的长足发展,人工智能在量化投资中的应用主要表现为计算机程序代替人工进行海量数据的筛选和清洗,并利用习得的规律训练模型,从而建立更为理性科学的投资交易策略,这在很大程度上克服了投资者的贪念、恐惧、侥幸的心理。随着信息技术的快速发展,我国的资本市场也正在步入量化投资高速发展的时期,在这种趋势下,将人工智能与量化投资相结合的新型投资策略便有了一定的研究价值和实践价值。
本文运用有效市场假说、行为金融理论、资本资产定价模型以及投资组合理论,创造性的构建了一套融合 IC 分析法与支持向量机算法的复合选股模型(ICanalysis-Support Vector Machine),并依照该模型构建了投资组合。文章分三个部分进行复合模型的搭建及策略检验。首先挑选覆盖基本面、技术面及行为金融面的 112 个因子作为因子备选库;其次获取日度数据进行清洗,将清洗后的因子经过 IC 检验及收益率检验进行因子择优;最后将择优后的因子作为支持向量机的输入指标来训练模型,进行策略回测,并根据策略结果进行模型的可行性分析及投资者适用性分析。
模型的研究样本为沪深 300 的成分股,回测时间为 2014年 6月1日至 2019年 6 月 1 日,对比基准为沪深 300 指数的收益及随机选股原则建立策略的收益,目的在于探索将 IC 分析法和支持向量机算法两种方法复合后的投资策略的有效性。实证结果显示:一是基于径向基函数建立的复合选股模型构建的投资策略年化收益率达 11.52%,超过沪深 300 指数收益 1.90%;二是基于 Sigmoid 函数建立的复合选股模型构建的投资策略年化收益率达 12.03%,超过沪深 300 指数收益5.76%,并且 Sharpe 比率由 31.5%提升到 33.14%;三是复合后的选股模型收益均远超随机选股模型的收益。由此可见,本文设计的融合 IC 分析法与支持向量机算法的复合选股模型在量化投资策略的构建上有一定的泛化能力,对资本市场的投资者具有较强的实践指导意义。 |
英文摘要 | Quantitative investment is a new type of investment technology and investment way. It establishes a systematic process of thinking and decision-making, including strategic trading, risk control and many other core contents, in addition to the integration of artificial intelligence technology, but also to promote the rapid development of quantitative investment. The application of artificial intelligence in quantitative investment mainly shows that the computer program takes the place of man to screen and clean the huge amount of data, and uses the learned law to train the model, so as to establish a more rational and scientific investment trading strategy, this to a large extent overcome the investor's greed, fear, fluke psychology. With the rapid development of information technology, China's capital market is also entering a period of rapid development of quantitative investment. Under this trend, the new investment strategy which combines artificial intelligence with quantitative investment has certain research value and development space. Using Efficient-market hypothesis, behavioral finance theory, the capital asset pricing model, and markowitz's portfolio theory, an integrated analysis-Support Vector Machine (ica-support Vector Machine) , which combines IC analysis with Support Vector Machine algorithm, is creatively constructed, and the portfolio is constructed according to this model. This paper is divided into three parts to build the composite model and test the strategy. Firstly, 112 factors covering fundamental, technical and behavioral financial aspects were selected as the candidate database of factors, secondly, the daily data were acquired for cleaning, and the factors after cleaning were selected by IC test and return rate test Finally, the optimal factor is used as the input index of the Support vector machine to train the model, carry out the strategy test, and analyze the feasibility of the model and the applicability of the investors according to the result of the strategy. The model is based on a sample of hs300 Index stocks, measured back from June 1,2014, to June 1,2019, against a benchmark of the earnings of the hs300 Index index and the earnings of a strategy based on the principle of random selection, the goal is to explore the effectiveness of an investment strategy that combines the methods of IC analysis and Support vector machine. The empirical results show that: First, the annualized return of the Investment Strategy based on the compound stock selection model established by the radial basis function is 11.52% , which exceeds the return of the hs300 Index index by 1.90% ; Second, the annualized return of the Investment Strategy based on the composite stock selection model established by Sigmoid function is 12.03% , which exceeds the return of the hs300 Index index by 5.76% , and the Sharpe ratio is increased from 31.5% to 33.14% Thirdly, the returns of the compound stock selection model far exceed the returns of the random |
学位类型 | 硕士 |
答辩日期 | 2021-05-22 |
学位授予地点 | 甘肃省兰州市 |
语种 | 中文 |
论文总页数 | 48 |
参考文献总数 | 45 |
馆藏号 | 0003726 |
保密级别 | 公开 |
中图分类号 | F83/396 |
文献类型 | 学位论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/29541 |
专题 | 金融学院 |
推荐引用方式 GB/T 7714 | 王越. 基于IC分析法和支持向量机算法的量化投资模型研究[D]. 甘肃省兰州市. 兰州财经大学,2021. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
10741_2018000005191_(1702KB) | 学位论文 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[王越]的文章 |
百度学术 |
百度学术中相似的文章 |
[王越]的文章 |
必应学术 |
必应学术中相似的文章 |
[王越]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论