作者董亚兰
姓名汉语拼音Dong Yalan
学号2018000010430
培养单位兰州财经大学
电话18893816452
电子邮件396742327@qq.com
入学年份2018-9
学位类别学术硕士
培养级别硕士研究生
学科门类管理学
一级学科名称管理科学与工程
学科方向管理统计学
学科代码1201
第一导师姓名李兵
第一导师姓名汉语拼音Li Bing
第一导师单位兰州财经大学
第一导师职称教授
题名基于深度全卷积网络的肝脏及肝脏肿瘤自动分割算法研究
英文题名Research on Automatic Segmentation Algorithm of Liver and Liver Tumor based on Deep Fully Convolution Network
关键词医学图像分割 全卷积神经网络 特征融合方式 双分支网络 多任务学习
外文关键词Medical image segmentation ; FCN ; Feature Fusion ; DB-Net ; Multi-Task Learning
摘要

  人工智能的快速发展使得计算机辅助诊断治疗在医学领域实现广泛使用,各种医学图像分割技术也在医学研究中显现出来并扮演着重要的角色。近年来,相关学者们对卷积神经网络特征提取功能展开了坚持不懈的探索和挖掘,医学图像分割任务也通过利用多种深度学习技术实现了自身的更新和优化,在具体实践中取得了比传统图像分割法更好的结果。但是,由于医学图像中人体组织的位置、大小、形状和纹理复杂,对比度不清晰,正负样本分布不均衡等许多问题层出不穷,单纯的全卷积神经网络Fully Convolutional Network, FCN网络结构模型在一些医学图像分割任务中并没有达到实际临床应用的效果。

  为了让计算机获得更准确的肝脏及肝脏肿瘤分割结果,提出了两种深度学习分割方法。具体方法如下:(1)提出了一种基于双分支网络DB-Net结构的肝脏分割方法和下采样过程中的特征融合方式。首先为了缓解肝脏分割的过分割问题,利用了CT图像中肝脏的边界信息,提出了一个边界和区域的双分支网络,其中边界提取分支的主要作用是约束优化区域分割分支的效果。之后将其在LiTS 2017肝脏分割数据集上进行实验,该方法的分割结果显示肝脏分割的边界有所改善,指标效果也得到了提升;此外,还将目前分类性能较好的ExFuse网络中的特征融合方式迁移到了腹部CT图像的肝脏分割任务当中,在网络侧监督的同时融入更多语义信息,来提高网络特征提取能力,易于网络识别更有用的信息;并且引入并改进交叉熵损失函数解决医学图像分割中背景区域远大于目标区域导致的模型训练困难的问题。(2)提出一种基于多任务学习网络的肝脏肿瘤分割方法并使用了一种新的损失函数。该方法通过分别提取肿瘤区域和非肿瘤区域的多任务学习方法来提高网络学习性能,并使用了一种有效的损失函数,该损失函数集合了交叉熵损失、JS散度、互斥损失,解决了样本分布不均,并且增强了这两个任务中的互补特征信息,也减少了肿瘤分割的收缩问题。所提出的方法不仅降低了网络的参数数量和训练速度,并且在LiTS 2017数据集上取得了较好的分割结果。提出的这两种模型对肝脏和肝脏肿瘤分割的形态变化具有鲁棒性,也一定程度上提高了肿瘤分割的精度和性能。

英文摘要

  With the quick advancement of artificial intelligence, computer -aided determination and treatment are broadly utilized within the medical field. Different medical image segmentation technologies show up and play an imperative part in medical research. In recent years, relevant scholars have carried out unremitting exploration and mining on the feature extraction function of convolutional neural network. The medical image segmentation task has also achieved its own update and optimization by using a variety of deep learning technologies, and achieved better results than the traditional image segmentation method in practice. In any case, due to the complexity of the location, size, shape and texture of human tissue in medical images, blurring contrast, uneven distribution of positive and negative samples and numerous other issues emerge in perpetually, the unadulterated Full Convolutional Network (FCN) structure model show has not accomplished the real clinical practice impact in a few medical image segmentation tasks.

  In order to get more accurate segmentation results of liver and liver tumor, two deep learning segmentation methods are proposed. The specific methods are as follows: (1) A new method of liver segmentation based on DB-Net structure and feature fusion in the process of down sampling are proposed. Firstly, in order to alleviate the over segmentation problem of liver segmentation, a double branch network of boundary and region is proposed by using the boundary information of liver in CT image. The main function of boundary extraction branch is to constrain and optimize the effect of region segmentation. After that, the experiment is carried out on the liver segmentation dataset of LiTS 2017. The segmentation results show that the boundary of liver segmentation is improved, and the index effect is also improved; In addition, the feature fusion method of ExFuse network, which has better classification performance at present, is transferred to the liver segmentation task of abdominal CT image. More semantic information is integrated into the network side supervision to improve the network feature extraction ability and facilitate the network to identify more useful information; The cross entropy loss function is introduced and improved to solve the problem that the background region is much larger than the target region in medical image segmentation, which makes the model training difficult.  (2) In this paper, a method of liver tumor segmentation based on multi task learning network is proposed, and a new loss function is used. This method improves the network learning performance by extracting tumor regions and non-tumor regions, and an effective loss function is used, which combines cross entropy loss, JS divergence and mutual exclusion loss to solve the uneven distribution of samples, enhance the complementary feature information in the two tasks, and reduce the shrinkage problem of tumor segmentation. The proposed method not only greatly reduces the number of network parameters and training speed, but also achieves good segmentation results on the LiTS 2017 dataset. These two models are robust to the morphological changes of liver and liver tumor segmentation, and improve the accuracy and performance of tumor segmentation to a certain extent.

学位类型硕士
答辩日期2021-05-15
学位授予地点甘肃省兰州市
语种中文
论文总页数61
参考文献总数64
馆藏号0003639
保密级别公开
中图分类号C93/50
文献类型学位论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/29320
专题信息工程与人工智能学院
推荐引用方式
GB/T 7714
董亚兰. 基于深度全卷积网络的肝脏及肝脏肿瘤自动分割算法研究[D]. 甘肃省兰州市. 兰州财经大学,2021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
10741_2018000010430_(1579KB)学位论文 开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[董亚兰]的文章
百度学术
百度学术中相似的文章
[董亚兰]的文章
必应学术
必应学术中相似的文章
[董亚兰]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10741_2018000010430_LW.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。