Variable selection for ultra-high dimensional quantile regression with missing data and measurement error
Bai, Yongxin1; Tian, Maozai1,2,3; Tang, Man-Lai4,5; Lee, Wing-Yan4
2021-01
发表期刊STATISTICAL METHODS IN MEDICAL RESEARCH
卷号30期号:1页码:129-150
摘要In this paper, we consider variable selection for ultra-high dimensional quantile regression model with missing data and measurement errors in covariates. Specifically, we correct the bias in the loss function caused by measurement error by applying the orthogonal quantile regression approach and remove the bias caused by missing data using the inverse probability weighting. A nonconvex Atan penalized estimation method is proposed for simultaneous variable selection and estimation. With the proper choice of the regularization parameter and under some relaxed conditions, we show that the proposed estimate enjoys the oracle properties. The choice of smoothing parameters is also discussed. The performance of the proposed variable selection procedure is assessed by Monte Carlo simulation studies. We further demonstrate the proposed procedure with a breast cancer data set.
关键词Quantile regression Atan penalty measurement error missing data HBIC criterion
DOI10.1177/0962280220941533
收录类别SCOPUS ; SCIE
ISSN0962-2802
语种英语
WOS研究方向Health Care Sciences & Services ; Mathematical & Computational Biology ; Medical Informatics ; Mathematics
WOS类目Health Care Sciences & Services ; Mathematical & Computational Biology ; Medical Informatics ; Statistics & Probability
WOS记录号WOS:000556308900001
出版者SAGE PUBLICATIONS LTD
原始文献类型Article
EISSN1477-0334
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/21308
专题统计与数据科学学院
通讯作者Tang, Man-Lai
作者单位1.Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing 100872, Peoples R China;
2.Xinjiang Univ Finance & Econ, Sch Stat & Informat, Urumqi, Peoples R China;
3.Lanzhou Univ Finance & Econ, Sch Stat, Lanzhou, Peoples R China;
4.Hang Seng Univ Hong Kong, Dept Math Stat & Insurance, Siu Lek Yuen, Peoples R China;
5.Hang Seng Univ Hong Kong, Big Data Intelligence Ctr, Siu Lek Yuen, Peoples R China
推荐引用方式
GB/T 7714
Bai, Yongxin,Tian, Maozai,Tang, Man-Lai,et al. Variable selection for ultra-high dimensional quantile regression with missing data and measurement error[J]. STATISTICAL METHODS IN MEDICAL RESEARCH,2021,30(1):129-150.
APA Bai, Yongxin,Tian, Maozai,Tang, Man-Lai,&Lee, Wing-Yan.(2021).Variable selection for ultra-high dimensional quantile regression with missing data and measurement error.STATISTICAL METHODS IN MEDICAL RESEARCH,30(1),129-150.
MLA Bai, Yongxin,et al."Variable selection for ultra-high dimensional quantile regression with missing data and measurement error".STATISTICAL METHODS IN MEDICAL RESEARCH 30.1(2021):129-150.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Bai, Yongxin]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
百度学术
百度学术中相似的文章
[Bai, Yongxin]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
必应学术
必应学术中相似的文章
[Bai, Yongxin]的文章
[Tian, Maozai]的文章
[Tang, Man-Lai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。