Institutional Repository of School of Information Engineering and Artificial Intelligence
Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images | |
Liu, Tianyu1![]() ![]() ![]() ![]() | |
2021-01 | |
发表期刊 | MEDICAL PHYSICS
![]() |
卷号 | 48期号:1页码:264-272 |
摘要 | Purpose The accurate segmentation of liver and liver tumors from CT images can assist radiologists in decision-making and treatment planning. The contours of liver and liver tumors are currently obtained by manual labeling, which is time-consuming and subjective. Computer-aided segmentation methods have been widely used in the segmentation of liver and liver tumors. However, due to the diversity of shape, volume, and image intensity, the segmentation is still a difficult task. In this study, we present a Spatial Feature Fusion Convolutional Network (SFF-Net) to automatically segment liver and liver tumors from CT images. Methods First, we extract side-outputs at each convolutional block in SFF-Net to make full use of multiscale features. Second, skip-connections are added in the down-sampling phase, therefore, the spatial information can be efficiently transferred to later layers. Third, we present feature fusion blocks (FFBs) to merge spatial features and high-level semantic features from early layers and later layers, respectively. Finally, a fully connected 3D conditional random fields (CRFs) is applied to refine the liver and liver tumor segmentation results. Results We test our method on the MICCAI 2017 Liver Tumor Segmentation (LiTS) challenge dataset. The Dice Global (DG) score, Dice per case (DC) score, Volume Overlap Error (VOE), Average Symmetric Surface Distance (ASSD), and tumor precision score are calculated to evaluate the liver and liver tumor segmentation accuracies. For the liver segmentation, DG is 0.955; DC is 0.937; VOE is 0.106; and ASSD is 3.678. For the tumor segmentation, DG is 0.746; DC is 0.592; VOE is 0.416; ASSD is 1.585 and the tumor precision score is 0.369. Conclusions The SFF-Net learns more spatial information by adding skip-connections and feature fusion blocks. The experiments validate that our method can accurately segment liver and liver tumors from CT images. |
关键词 | automatic segmentation CT images feature fusion liver liver tumor spatial information |
DOI | 10.1002/mp.14585 |
收录类别 | EI ; SCOPUS ; SCIE |
ISSN | 0094-2405 |
语种 | 英语 |
WOS研究方向 | Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:000592908400001 |
出版者 | WILEY |
EI入藏号 | 20204909562907 |
EI主题词 | Convolution |
EI分类号 | 461.2 Biological Materials and Tissue Engineering ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 912.2 Management ; 922.2 Mathematical Statistics |
原始文献类型 | Journal article (JA) |
EISSN | 2473-4209 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/21307 |
专题 | 信息工程与人工智能学院 工商管理学院 党委研究生工作部(学位管理与研究生工作处) 科技处 学校办公室 |
通讯作者 | He, Jiangping |
作者单位 | 1.Lanzhou Univ Finance & Econ, Dept Elect Engn, Lanzhou 730020, Peoples R China; 2.IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA; 3.Univ Chicago, Dept Radiol, Chicago, IL 60637 USA |
第一作者单位 | 兰州财经大学 |
通讯作者单位 | 兰州财经大学 |
推荐引用方式 GB/T 7714 | Liu, Tianyu,Liu, Junchi,Ma, Yan,et al. Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images[J]. MEDICAL PHYSICS,2021,48(1):264-272. |
APA | Liu, Tianyu.,Liu, Junchi.,Ma, Yan.,He, Jiangping.,Han, Jincang.,...&Chen, Chin-Tu.(2021).Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images.MEDICAL PHYSICS,48(1),264-272. |
MLA | Liu, Tianyu,et al."Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images".MEDICAL PHYSICS 48.1(2021):264-272. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Tianyu]的文章 |
[Liu, Junchi]的文章 |
[Ma, Yan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Tianyu]的文章 |
[Liu, Junchi]的文章 |
[Ma, Yan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Tianyu]的文章 |
[Liu, Junchi]的文章 |
[Ma, Yan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论