Lanzhou University of Finance and Economics. All
PULLBACK ATTRACTORS FOR NONCLASSICAL DIFFUSION DELAY EQUATIONS ON UNBOUNDED DOMAINS WITH NON-AUTONOMOUS DETERMINISTIC AND STOCHASTIC FORCING TERMS | |
Zhang, Fang-Hong; Han, Wei | |
2016-06-08 | |
发表期刊 | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS |
摘要 | In this article, we prove the existence of pullback attractor in C([-h, 0]; H-1 (R-N)) for a stochastic nonclassical diffusion equations on unbounded domains with non-autonomous deterministic and stochastic forcing terms, and the pullback asymptotic compactness of the random dynamical system is established by a tail-estimates method. |
关键词 | Stochastic nonclassical diffusion equations pullback attractor asymptotic compactness |
收录类别 | SCI ; SCOPUS ; SCIE |
ISSN | 1072-6691 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000377752700004 |
出版者 | TEXAS STATE UNIV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/1340 |
专题 | 兰州财经大学 |
作者单位 | Lanzhou Commercial Coll, Longqiao Coll, Dept Math, Lanzhou, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Fang-Hong,Han, Wei. PULLBACK ATTRACTORS FOR NONCLASSICAL DIFFUSION DELAY EQUATIONS ON UNBOUNDED DOMAINS WITH NON-AUTONOMOUS DETERMINISTIC AND STOCHASTIC FORCING TERMS[J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS,2016. |
APA | Zhang, Fang-Hong,&Han, Wei.(2016).PULLBACK ATTRACTORS FOR NONCLASSICAL DIFFUSION DELAY EQUATIONS ON UNBOUNDED DOMAINS WITH NON-AUTONOMOUS DETERMINISTIC AND STOCHASTIC FORCING TERMS.ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS. |
MLA | Zhang, Fang-Hong,et al."PULLBACK ATTRACTORS FOR NONCLASSICAL DIFFUSION DELAY EQUATIONS ON UNBOUNDED DOMAINS WITH NON-AUTONOMOUS DETERMINISTIC AND STOCHASTIC FORCING TERMS".ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS (2016). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Fang-Hong]的文章 |
[Han, Wei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Fang-Hong]的文章 |
[Han, Wei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Fang-Hong]的文章 |
[Han, Wei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论