Institutional Repository of School of Statistics
An effective method to reduce the computational complexity of composite quantile regression | |
Wu, Yanke; Tian, Maozai | |
2017-12 | |
发表期刊 | COMPUTATIONAL STATISTICS |
卷号 | 32期号:4页码:1375-1393 |
摘要 | In this article, we aim to reduce the computational complexity of the recently proposed composite quantile regression (CQR). We propose a new regression method called infinitely composite quantile regression (ICQR) to avoid the determination of the number of uniform quantile positions. Unlike the composite quantile regression, our proposed ICQR method allows combining continuous and infinite quantile positions. We show that the proposed ICQR criterion can be readily transformed into a linear programming problem. Furthermore, the computing time of the ICQR estimate is far less than that of the CQR, though it is slightly larger than that of the quantile regression. The oracle properties of the penalized ICQR are also provided. The simulations are conducted to compare different estimators. A real data analysis is used to illustrate the performance. |
关键词 | Quantile regression Composite quantile regression Computational complexity Linear programming Dual problem |
DOI | 10.1007/s00180-017-0749-8 |
收录类别 | SCI ; SCIE |
ISSN | 0943-4062 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000413025300008 |
出版者 | SPRINGER HEIDELBERG |
原始文献类型 | Article |
EISSN | 1613-9658 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/11694 |
专题 | 统计与数据科学学院 |
作者单位 | 1.Guangdong Ocean Univ, Coll Sci, Zhanjiang 524088, Guangdong, Peoples R China; 2.Renmin Univ China, Sch Stat, Ctr Appl Stat, Beijing 100872, Peoples R China; 3.Lanzhou Univ Finance & Econ, Sch Stat, Lanzhou 730101, Gansu, Peoples R China; 4.Xinjiang Univ Finance & Econ, Sch Stat & Informat, Urumqi 830012, Xinjiang, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Yanke,Tian, Maozai. An effective method to reduce the computational complexity of composite quantile regression[J]. COMPUTATIONAL STATISTICS,2017,32(4):1375-1393. |
APA | Wu, Yanke,&Tian, Maozai.(2017).An effective method to reduce the computational complexity of composite quantile regression.COMPUTATIONAL STATISTICS,32(4),1375-1393. |
MLA | Wu, Yanke,et al."An effective method to reduce the computational complexity of composite quantile regression".COMPUTATIONAL STATISTICS 32.4(2017):1375-1393. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
15502.pdf(535KB) | 期刊论文 | 出版稿 | 暂不开放 | CC BY-NC-SA | 请求全文 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wu, Yanke]的文章 |
[Tian, Maozai]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wu, Yanke]的文章 |
[Tian, Maozai]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wu, Yanke]的文章 |
[Tian, Maozai]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论