An effective method to reduce the computational complexity of composite quantile regression
Wu, Yanke; Tian, Maozai
2017-12
发表期刊COMPUTATIONAL STATISTICS
卷号32期号:4页码:1375-1393
摘要In this article, we aim to reduce the computational complexity of the recently proposed composite quantile regression (CQR). We propose a new regression method called infinitely composite quantile regression (ICQR) to avoid the determination of the number of uniform quantile positions. Unlike the composite quantile regression, our proposed ICQR method allows combining continuous and infinite quantile positions. We show that the proposed ICQR criterion can be readily transformed into a linear programming problem. Furthermore, the computing time of the ICQR estimate is far less than that of the CQR, though it is slightly larger than that of the quantile regression. The oracle properties of the penalized ICQR are also provided. The simulations are conducted to compare different estimators. A real data analysis is used to illustrate the performance.
关键词Quantile regression Composite quantile regression Computational complexity Linear programming Dual problem
DOI10.1007/s00180-017-0749-8
收录类别SCI ; SCIE
ISSN0943-4062
语种英语
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000413025300008
出版者SPRINGER HEIDELBERG
原始文献类型Article
EISSN1613-9658
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/11694
专题统计与数据科学学院
作者单位1.Guangdong Ocean Univ, Coll Sci, Zhanjiang 524088, Guangdong, Peoples R China;
2.Renmin Univ China, Sch Stat, Ctr Appl Stat, Beijing 100872, Peoples R China;
3.Lanzhou Univ Finance & Econ, Sch Stat, Lanzhou 730101, Gansu, Peoples R China;
4.Xinjiang Univ Finance & Econ, Sch Stat & Informat, Urumqi 830012, Xinjiang, Peoples R China
推荐引用方式
GB/T 7714
Wu, Yanke,Tian, Maozai. An effective method to reduce the computational complexity of composite quantile regression[J]. COMPUTATIONAL STATISTICS,2017,32(4):1375-1393.
APA Wu, Yanke,&Tian, Maozai.(2017).An effective method to reduce the computational complexity of composite quantile regression.COMPUTATIONAL STATISTICS,32(4),1375-1393.
MLA Wu, Yanke,et al."An effective method to reduce the computational complexity of composite quantile regression".COMPUTATIONAL STATISTICS 32.4(2017):1375-1393.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
15502.pdf(535KB)期刊论文出版稿暂不开放CC BY-NC-SA请求全文
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Yanke]的文章
[Tian, Maozai]的文章
百度学术
百度学术中相似的文章
[Wu, Yanke]的文章
[Tian, Maozai]的文章
必应学术
必应学术中相似的文章
[Wu, Yanke]的文章
[Tian, Maozai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。