Institutional Repository of School of Information Engineering and Artificial Intelligence
SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine | |
Guo, Hua; Wang, Jikui; Ao, Wei; He, Yulin | |
2018 | |
发表期刊 | COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE |
卷号 | 2018 |
摘要 | A novel ensemble scheme for extreme learning machine (ELM), named Stochastic Gradient Boosting-based Extreme Learning Machine (SGB-ELM), is proposed in this paper. Instead of incorporating the stochastic gradient boosting method into ELM ensemble procedure primitively, SGB-ELM constructs a sequence of weak ELMs where each individual ELM is trained additively by optimizing the regularized objective. Specifically, we design an objective function based on the boosting mechanism where a regularization item is introduced simultaneously to alleviate overfitting. Then the derivation formula aimed at solving the output-layer weights of each weak ELM is determined using the second-order optimization. As the derivation formula is hard to be analytically calculated and the regularized objective tends to employ simple functions, we take the output-layer weights learned by the current pseudo residuals as an initial heuristic item and thus obtain the optimal output-layer weights by using the derivation formula to update the heuristic item iteratively. In comparison with several typical ELM ensemble methods, SGB-ELM achieves better generalization performance and predicted robustness, which demonstrates the feasibility and effectiveness of SGB-ELM. |
关键词 | Iterative methods Knowledge acquisition Machine learning Optimization Boosting mechanism Derivation formulas Ensemble methods Extreme learning machine Generalization performance Objective functions Second order optimization Stochastic gradient boosting |
DOI | 10.1155/2018/4058403 |
收录类别 | SCI ; SCIE ; EI |
ISSN | 1687-5265 |
语种 | 英语 |
WOS研究方向 | Mathematical & Computational Biology ; Neurosciences & Neurology |
WOS类目 | Mathematical & Computational Biology ; Neurosciences |
WOS记录号 | WOS:000437974100001 |
出版者 | HINDAWI LTD |
EI入藏号 | 20182905551679 |
原始文献类型 | Article |
EISSN | 1687-5273 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/11588 |
专题 | 信息工程与人工智能学院 |
作者单位 | 1.Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou 730020, Gansu, Peoples R China; 2.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China |
推荐引用方式 GB/T 7714 | Guo, Hua,Wang, Jikui,Ao, Wei,et al. SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine[J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2018,2018. |
APA | Guo, Hua,Wang, Jikui,Ao, Wei,&He, Yulin.(2018).SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine.COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2018. |
MLA | Guo, Hua,et al."SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine".COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018(2018). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
15497.pdf(2005KB) | 期刊论文 | 出版稿 | 暂不开放 | CC BY-NC-SA | 请求全文 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Guo, Hua]的文章 |
[Wang, Jikui]的文章 |
[Ao, Wei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Guo, Hua]的文章 |
[Wang, Jikui]的文章 |
[Ao, Wei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Guo, Hua]的文章 |
[Wang, Jikui]的文章 |
[Ao, Wei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论