SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine
Guo, Hua; Wang, Jikui; Ao, Wei; He, Yulin
2018
发表期刊COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE
卷号2018
摘要A novel ensemble scheme for extreme learning machine (ELM), named Stochastic Gradient Boosting-based Extreme Learning Machine (SGB-ELM), is proposed in this paper. Instead of incorporating the stochastic gradient boosting method into ELM ensemble procedure primitively, SGB-ELM constructs a sequence of weak ELMs where each individual ELM is trained additively by optimizing the regularized objective. Specifically, we design an objective function based on the boosting mechanism where a regularization item is introduced simultaneously to alleviate overfitting. Then the derivation formula aimed at solving the output-layer weights of each weak ELM is determined using the second-order optimization. As the derivation formula is hard to be analytically calculated and the regularized objective tends to employ simple functions, we take the output-layer weights learned by the current pseudo residuals as an initial heuristic item and thus obtain the optimal output-layer weights by using the derivation formula to update the heuristic item iteratively. In comparison with several typical ELM ensemble methods, SGB-ELM achieves better generalization performance and predicted robustness, which demonstrates the feasibility and effectiveness of SGB-ELM.
关键词Iterative methods Knowledge acquisition Machine learning Optimization Boosting mechanism Derivation formulas Ensemble methods Extreme learning machine Generalization performance Objective functions Second order optimization Stochastic gradient boosting
DOI10.1155/2018/4058403
收录类别SCI ; SCIE ; EI
ISSN1687-5265
语种英语
WOS研究方向Mathematical & Computational Biology ; Neurosciences & Neurology
WOS类目Mathematical & Computational Biology ; Neurosciences
WOS记录号WOS:000437974100001
出版者HINDAWI LTD
EI入藏号20182905551679
原始文献类型Article
EISSN1687-5273
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/11588
专题信息工程与人工智能学院
作者单位1.Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou 730020, Gansu, Peoples R China;
2.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
推荐引用方式
GB/T 7714
Guo, Hua,Wang, Jikui,Ao, Wei,et al. SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine[J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2018,2018.
APA Guo, Hua,Wang, Jikui,Ao, Wei,&He, Yulin.(2018).SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine.COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2018.
MLA Guo, Hua,et al."SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine".COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018(2018).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
15497.pdf(2005KB)期刊论文出版稿暂不开放CC BY-NC-SA请求全文
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo, Hua]的文章
[Wang, Jikui]的文章
[Ao, Wei]的文章
百度学术
百度学术中相似的文章
[Guo, Hua]的文章
[Wang, Jikui]的文章
[Ao, Wei]的文章
必应学术
必应学术中相似的文章
[Guo, Hua]的文章
[Wang, Jikui]的文章
[Ao, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。